Another Approach to Juhl's Conformally Covariant Differential Operators from S^n to S^{n-1}

Jean-Louis CLERC

Institut Elie Cartan de Lorraine, Université de Lorraine, France E-mail: jean-louis.clerc@univ-lorraine.fr

Received December 07, 2016, in final form April 11, 2017; Published online April 19, 2017 https://doi.org/10.3842/SIGMA.2017.026

Abstract. A family $(\mathbf{D}_{\lambda})_{\lambda \in \mathbb{C}}$ of differential operators on the sphere S^n is constructed. The operators are conformally covariant for the action of the subgroup of conformal transformations of S^n which preserve the smaller sphere $S^{n-1} \subset S^n$. The family of conformally covariant differential operators from S^n to S^{n-1} introduced by A. Juhl is obtained by composing these operators on S^n and taking restrictions to S^{n-1} .

 $Key\ words:$ conformally covariant differential operators; Juhl's covariant differential operators

2010 Mathematics Subject Classification: 58J70; 43A85

1 Introduction

Let $S = S^n$ be the *n*-dimensional sphere in \mathbb{R}^{n+1} and let $G = \mathrm{SO}_0(1, n+1)$ be (the neutral component of) the group of conformal transformations of S. Let $S' \simeq S^{n-1}$ be the subspace of points of S with vanishing last coordinate ($x_n = 0$ in our notation) and let $G' \simeq \mathrm{SO}_0(1, n)$ be the conformal group of S', viewed as the subgroup of G which stabilizes S'. Let $(\pi_\lambda)_{\lambda \in \mathbb{C}}$ be the scalar principal series of representations of G acting on $C^{\infty}(S)$. Denote by $\pi_{\lambda|G'}$ its restriction to G'. Let $(\pi'_{\mu})_{\mu \in \mathbb{C}}$ be the scalar principal series of G' acting on $C^{\infty}(S')$.

In [6] A. Juhl has constructed a family $\mathcal{D}_N(\lambda)_{\lambda \in \mathbb{C}, N \in \mathbb{N}}$ of differential operators from $C^{\infty}(S)$ into $C^{\infty}(S')$, which are intertwining operators between $\pi_{\lambda|G'}$ and $\pi'_{\lambda+N}$.¹ Later, these operators were obtained by T. Kobayashi and B. Speh in [11] as residues of a meromorphic family of symmetry breaking operators associated to the restriction problem for the pair (G, G'). A third point of view was proposed by T. Kobayashi and M. Pevzner in [9, 10], based on the *F*-method. Similar operators were recently constructed for differential forms on spheres [4, 8].

The new approach to Juhl's operators which I present in this article follows a method that I used for similar problems, in the context of the restriction problem for a pair $(G \times G, G')$ where G' = G embedded diagonally in $G \times G$. I was influenced by a reminiscence of the Ω -process which yields both the transvectants and the Rankin-Cohen brackets. These operators may be viewed as covariant bi-differential operators for the group $SL(2, \mathbb{R})$, or symmetry breaking differential operators from $SL(2, \mathbb{R}) \times SL(2, \mathbb{R})$ to its diagonal subgroup. For a presentation of these classical results see Section 5 of [2] for a quick overview or [12] for a thorough exposition of the transvectants.

The new method was introduced in a collaboration with R. Beckmann for the conformal group of the sphere (see [1]) and the scalar principal series, then for $G = SL(2n, \mathbb{R})$ and the degenerate principal series acting on the Grassmannian $Gr(n, 2n; \mathbb{R})$ (see [2]).

The first step of the method, for the present case, is to introduce the multiplication by x_n , viewed as an operator M on $C^{\infty}(S)$. The operator M is a "universal" G'-intertwining operator,

¹Our λ corresponds to $-\lambda$ in Juhl's notation.

in the sense that, for any $\lambda \in \mathbb{C}$, the operator M intertwines $\pi_{\lambda|G'}$ and $\pi_{\lambda-1|G'}$. Next recall the family of Knapp–Stein operators $(I_{\lambda})_{\lambda\in\mathbb{C}}$ which are G-intertwining operators with respect to $(\pi_{\lambda}, \pi_{n-\lambda})$. The operator²

$$\mathbf{D}_{\lambda} = I_{n-\lambda-1} \circ M \circ I_{\lambda}$$

obtained by twisting M by the appropriate Knapp–Stein intertwining operators is clearly an intertwining operator with respect to $(\pi_{\lambda|G'}, \pi_{\lambda+1|G'})$. Our main result (see Theorem 3.2) is that \mathbf{D}_{λ} is a *differential* operator. The proof is obtained in the non compact realization of the principal series (passing from S^n to \mathbb{R}^n by a conformal map) and uses Euclidean Fourier transform.

The construction of conformally covariant differential operators from S^n to S^{n-1} is now easy. For N a non-negative integer, consider

$$\mathbf{D}_{N,\lambda} = \mathbf{D}_{\lambda+N-1} \circ \cdots \circ \mathbf{D}_{\lambda+1} \circ \mathbf{D}_{\lambda} \quad \text{or} \quad \mathbb{D}_{N,\lambda} = I_{n-\lambda-N} \circ M^N \circ I_{\lambda}.$$

The two families of differential operators on S (which coincide up to a meromorphic function of λ) are covariant with respect to $(\pi_{\lambda|G'}, \pi_{\lambda+N|G'})$. Finally, let

$$\mathbf{D}_N(\lambda) = \operatorname{res} \circ \mathbf{D}_{N,\lambda},$$

where res is the restriction map from $C^{\infty}(S)$ to $C^{\infty}(S')$. The operator $\mathbf{D}_N(\lambda)$ is a differential operator from S to S' which is covariant with respect to $(\pi_{\lambda|G'}, \pi'_{\lambda+N})$. The family $\mathbf{D}_N(\lambda)_{\lambda\in\mathbb{C},N\in\mathbb{N}}$ essentially coincides with Juhl's family.

The operator \mathbf{D}_{λ} has a simple expression in the non compact picture, see (4.6). It is tempting to find a more direct approach to this operator. This is achieved in the last section, by using yet another realization of the principal series, sometimes called the *ambient space* realization. The way the operator is constructed is much simpler, and it is then easy to determine its expression in the non compact picture (recovering the expression of \mathbf{D}_{λ} on \mathbb{R}^n , see Proposition 7.8), but also in the compact realization (see Proposition 7.9), that is to say as a G'-conformally covariant differential operator on S. Some generalization of these formulæ in the realm of conformal geometry on a Riemannian manifold seems plausible.

2 The principal series of $SO_0(1, n + 1)$ and the Knapp–Stein intertwining operators

Let E be a Euclidean space of dimension n+1, and choose an orthonormal basis $\{e_0, e_1, \ldots, e_n\}$. Let $S = S^n$ be the unit sphere of E, i.e.,

$$S = \left\{ x = (x_0, x_1, \dots, x_n), \ x_0^2 + x_1^2 + \dots + x_n^2 = 1 \right\}$$

Let **E** be the vector space $\mathbb{R} \oplus E$, with the Lorentzian quadratic form

$$Q(\mathbf{x}) = [(t, x), (t, x)] = t^2 - |x|^2$$
 for $\mathbf{x} = (t, x), \quad t \in \mathbb{R}, \quad x \in E.$

For $\mathbf{x} = (t, x) \in \mathbf{E}$, we let

$$t(\mathbf{x}) = t, \qquad \mathbf{x}_E = x.$$

The space of isotropic lines S in \mathbf{E} can be identified with S by the map

 $S \ni x \longmapsto d_x = \mathbb{R}(1, x) \in S, \qquad S \ni d \longmapsto d \cap \{t = 1\}.$

²For technical reasons, a normalizing factor is introduced, see (3.4).

$$(1,g(x)) = t(g.(1,x))^{-1}g.(1,x).$$

Set, for $g \in G$ and $x \in S$

$$\kappa(g, x) = t\big(g.(1, x)\big)^{-1}$$

Clearly $\kappa(g, x)$ is a smooth, strictly positive function on $G \times S$. Moreover $\kappa(g, x)$ satisfies the *cocycle property*: for any g_1, g_2 and any $x \in S$,

$$\kappa(g_1g_2, x) = \kappa(g_1, g_2(x))\kappa(g_2, x).$$

This action of G on S is known to be *conformal*. For $g \in G$, $x \in S$ and ξ an arbitrary tangent vector to S at x

$$|Dg(x)\xi| = \kappa(g, x)|\xi|,$$

and hence $\kappa(g, x)$ is the *conformal factor* of g at x.

Associated to the action of G on S there is a family of representations on $C^{\infty}(S)$, which, from the point of view of harmonic analysis is the *scalar principal series* of G. For $\lambda \in \mathbb{C}$, $g \in G$ and $f \in C^{\infty}(S)$, let

$$\pi_{\lambda}(g)f(x) = \kappa \left(g^{-1}, x\right)^{\lambda} f\left(g^{-1}(x)\right).$$

The formula defines a (smooth) representation π_{λ} of G on $C^{\infty}(S)$.

The Knapp–Stein intertwining operators are a major tool in harmonic analysis of G (as of any semi-simple Lie group, see, e.g., [7]). For $\lambda \in \mathbb{C}$ and $f \in C^{\infty}(S)$, let

$$I_{\lambda}f(x) = \frac{1}{\Gamma(\lambda - \frac{n}{2})} \int_{S} |x - y|^{-2n + 2\lambda} f(y) dy, \qquad (2.1)$$

where dy stands for the Lebesgue measure on S induced by the Euclidean structure. For $\operatorname{Re} \lambda > \frac{n}{2}$, this formula defines a continuous operator I_{λ} on $C^{\infty}(S)$.

Proposition 2.1.

- i) The definition (2.1) can be analytically continued in λ to all of \mathbb{C} .
- ii) The analytic continuation yields a holomorphic family of operators I_{λ} on $C^{\infty}(S)$, which satisfy the intertwining relation

$$\forall g \in G, \qquad I_{\lambda} \circ \pi_{\lambda}(g) = \pi_{n-\lambda}(g) \circ I_{\lambda}. \tag{2.2}$$

The following complementary result will be needed later.

Proposition 2.2. For any $\lambda \in \mathbb{C}$

$$I_{\lambda} \circ I_{n-\lambda} = \frac{\pi^n}{\Gamma(\lambda)\Gamma(n-\lambda)} \,\mathrm{id}\,.$$
(2.3)

The next result corresponds to reducibility points for the scalar principal series. Let $\mathcal{P}(S)$ be the space of restrictions to S of polynomial functions on E, and for $k \in \mathbb{N}$, let \mathcal{P}_k be the space of restrictions to S of polynomials on E of degree $\leq k$. Finally, let \mathcal{P}_k^{\perp} be the subspace of $C^{\infty}(S)$ given by

$$\mathcal{P}_k^{\perp} = \left\{ f \in C^{\infty}(S), \, \int_S f(x)p(x)dx = 0, \text{ for any } p \in \mathcal{P}_k \right\}.$$

Proposition 2.3.

i) Let $\lambda = n + k, k \in \mathbb{N}$. Then

$$\operatorname{Im}(I_{n+k}) = \mathcal{P}_k, \qquad \operatorname{Ker}(I_{n+k}) = \mathcal{P}_k^{\perp}.$$
(2.4)

ii) Let
$$\lambda = -k, k \in \mathbb{N}$$
. Then

$$\operatorname{Ker}(I_{-k}) = \mathcal{P}_k, \qquad \operatorname{Im}(I_{-k}) = \mathcal{P}_k^{\perp}. \tag{2.5}$$

3 Construction of the family $\widetilde{D}_{\lambda}, \lambda \in \mathbb{C}$

Now let $E' = \{x \in E, x_n = 0\}$ and $S' = S \cap E'$. Then S' is an (n-1)-dimensional sphere. Let G' be the subgroup of elements of G of the form

$$g = \begin{pmatrix} & & 0 \\ g' & & \vdots \\ & & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix}, \qquad g' \in \mathrm{SO}_0(1, n).$$

Clearly, G' is a subgroup of G, isomorphic to $SO_0(1, n)$. Elements of G' preserve the hyperplane $\{x_n = 0\}$ in **E** and hence the action of G' on S preserves S'.

For $x \in E$, write $x = (x', x_n)$, with $x' \in \mathbb{R}^n$. For $g \in G'$,

$$g(1,x) = g(1,x',x_n) = (g'.(1,x'),x_n).$$

If $x \in S$, the last equation can be rewritten as

$$\kappa(g,x)^{-1}(1,g(x)) = (g'.(1,x'),x_n),$$

so that

$$g(x)_n = \kappa(g, x)x_n. \tag{3.1}$$

In the sequel, the distinction between g and g' in the notation is abandoned, the context providing the correct interpretation.

Let M be the operator defined on $C^{\infty}(S)$ by

$$Mf(x) = x_n f(x), \qquad f \in C^{\infty}(S).$$

Proposition 3.1. The operator M satisfies

$$\forall g \in G' \qquad M \circ \pi_{\lambda}(g) = \pi_{\lambda-1}(g) \circ M. \tag{3.2}$$

Proof. This is an immediate consequence of (3.1).

Next let \mathbf{D}_{λ} be the operator on $C^{\infty}(S)$ defined by

$$\mathbf{D}_{\lambda} = I_{n-\lambda-1} \circ M \circ I_{\lambda},$$

which corresponds to the following diagram

$$C^{\infty}(S) \xrightarrow{\mathbf{D}_{\lambda}} C^{\infty}(S)$$

$$\downarrow^{I_{\lambda}} \qquad \uparrow^{I_{n-\lambda-1}}$$

$$C^{\infty}(S) \xrightarrow{M} C^{\infty}(S).$$

As a consequence of the intertwining property of the Knapp–Stein operators (2.2) and Proposition 3.1, \mathbf{D}_{λ} satisfies for $g \in G'$

$$\mathbf{D}_{\lambda} \circ \pi_{\lambda}(g) = \pi_{\lambda+1}(g) \circ \mathbf{D}_{\lambda}. \tag{3.3}$$

Otherwise said, the operator \mathbf{D}_{λ} is covariant with respect to $(\pi_{\lambda|G'}, \pi_{\lambda+1|G'})$.

Theorem 3.2. The operator \mathbf{D}_{λ} is a differential operator on S.

The proof of Theorem 3.2 will be given at the end the next section.

Proposition 3.3. Let $\lambda \in (n + \mathbb{N}) \cup (-1 - \mathbb{N})$. Then $\mathbf{D}_{\lambda} = 0$.

Proof. Let first $\lambda = n + k$ for some $k \in \mathbb{N}$. Then $I_{\lambda} = I_{n+k}$, and by (2.4) Im $(I_{\lambda}) = \mathcal{P}_k$. Next Im $(M \circ I_{\lambda}) \subset \mathcal{P}_{k+1}$. Now $I_{n-\lambda-1} = I_{-k-1}$ and using (2.5), $I_{n-\lambda-1} \circ M \circ I_{\lambda} = 0$.

Now let $\lambda = -k$, with $k \ge 1$. Then $I_{\lambda} = I_{-k}$ and by (2.5), $\operatorname{Im}(I_{\lambda}) = \mathcal{P}_{k}^{\perp}$. Next $\operatorname{Im}(M \circ I_{\lambda}) \subset \mathcal{P}_{1}\mathcal{P}_{k}^{\perp} \subset \mathcal{P}_{k-1}^{\perp}$. Now $I_{n-\lambda-1} = I_{n+k-1}$ which using (2.4) implies $I_{n-\lambda-1} \circ M \circ I_{\lambda} = 0$.

To compensate for these zeroes of \mathbf{D}_{λ} , introduce

$$\widetilde{\mathbf{D}}_{\lambda} = \Gamma(\lambda+1)\Gamma(n-\lambda)\mathbf{D}_{\lambda} \tag{3.4}$$

for $\lambda \notin (n + \mathbb{N}) \cup (-1 - \mathbb{N})$ and extend continuously to all of \mathbb{C} to get a holomorphic family $(\widetilde{\mathbf{D}}_{\lambda})_{\lambda \in \mathbb{C}}$ of differential operators on S covariant with respect to $(\pi_{\lambda \mid G'}, \pi_{\lambda+1 \mid G'})$.

4 The expression of \widetilde{D}_{λ} in the non-compact picture

Consider the point $-\mathbf{1} = (-1, 0, \dots, 0) \in S$. The stereographic projection with source at $-\mathbf{1}$ provides a diffeomorphism from $S \setminus \{-\mathbf{1}\}$ onto the hyperplane $\{x_n = 1\}$. The inverse map (up to a scaling by a factor 2) $c \colon \mathbb{R}^n \longrightarrow S$ is given by

$$c(\xi) = \begin{pmatrix} \frac{1 - |\xi|^2}{1 + |\xi|^2} \\ \frac{2\xi_1}{1 + |\xi|^2} \\ \vdots \\ \frac{2\xi_n}{1 + |\xi|^2} \end{pmatrix}.$$
(4.1)

When using this local chart on S, we refer to the *non-compact picture*, as a reference to semisimple harmonic analysis. Geometric considerations (or an elementary computation) show that, for $\xi, \eta \in \mathbb{R}^n$

$$|c(\xi) - c(\eta)|^2 = \kappa(c,\xi)|\xi - \eta|^2\kappa(c,\eta),$$

where, for $\xi \in \mathbb{R}^n$, we set

$$\kappa(c,\xi) = 2(1+|\xi|^2)^{-1}.$$

There is an infinitesimal version of this result, namely

$$|Dc(\xi)\eta| = \kappa(c,\xi)|\eta|$$

for $\xi, \eta \in \mathbb{R}^n$. This last statement shows that c is conformal from \mathbb{R}^n with its standard Euclidean structure into S.

The action of g on S can be transferred as a (rational) action of G on \mathbb{R}^n , namely $c^{-1} \circ g \circ c$. For notational convenience, we still denote this action on \mathbb{R}^n by $(g,\xi) \mapsto g(\xi), g \in G, \xi \in \mathbb{R}^n$. As the map c is conformal, the transferred action of G on \mathbb{R}^n is still conformal. For $g \in G$ defined at $\xi \in \mathbb{R}^n$, we let $\kappa(q,\xi)$ be the corresponding conformal factor of q at ξ .

Let $\lambda \in \mathbb{C}$. For $f \in C^{\infty}(S)$ let $C_{\lambda}(f)$ be defined by

$$C_{\lambda}(f)(\xi) = \kappa(c,\xi)^{\lambda} f(c(\xi)), \qquad \xi \in \mathbb{R}^n$$

and let \mathcal{H}_{λ} be the image of C_{λ} . It is easily proved that

$$\mathcal{S}(\mathbb{R}^n) \subset \mathcal{H}_{\lambda} \subset \mathcal{S}'(\mathbb{R}^n),$$

where $\mathcal{S}(\mathbb{R}^n)$ stands for the Schwartz space on \mathbb{R}^n and $\mathcal{S}'(\mathbb{R}^n)$ for its dual, the space of tempered distributions.

The representation π_{λ} can be transferred in the non-compact model, using C_{λ} as intertwining map, i.e., set

$$\rho_{\lambda}(g) = C_{\lambda} \circ \pi_{\lambda}(g) \circ C_{\lambda}^{-1}.$$

Using the cocycle property of κ , ρ_{λ} can be realized as

$$\rho_{\lambda}(g)f(\xi) = \kappa \left(g^{-1}, \xi\right)^{\lambda} f\left(g^{-1}(\xi)\right),$$

where $f \in \mathcal{H}_{\lambda}$ and $g \in G$.

Similarly, the Knapp–Stein operators can be transferred to the non-compact picture. For $s \in \mathbb{C}$, consider the expression

$$h_s(\xi) = \frac{1}{\Gamma(\frac{n}{2} + \frac{s}{2})} |\xi|^s, \qquad \xi \in \mathbb{R}^n$$

For $\operatorname{Re}(s) > -n$, h_s is locally summable with moderate growth at infinity, hence defines a tempered distribution. The $(\mathcal{S}'(\mathbb{R}^n)$ -valued) function $s \mapsto h_s$ can be extended by analytic continuation to \mathbb{C} and the Γ factor in the definition of h_s is so chosen that it extends as an *entire* function with values in $\mathcal{S}'(\mathbb{R}^n)$ (for more details see, e.g., [5]).

For $\lambda \in \mathbb{C}$, the Knapp–Stein operator J_{λ} is given by

$$J_{\lambda}f = h_{-2n+2\lambda} \star f,$$

or more concretely

$$J_{\lambda}f(\xi) = \frac{1}{\Gamma(\lambda - \frac{n}{2})} \int_{\mathbb{R}^n} |\xi - \eta|^{-2n+2\lambda} f(\eta) d\eta.$$

As for any $s \in \mathbb{C}$ h_s is a tempered distribution, J_{λ} maps $\mathcal{S}(\mathbb{R}^n)$ into $\mathcal{S}'(\mathbb{R}^n)$.

Proposition 4.1. Let $\lambda \in \mathbb{C}$. Then for $f \in \mathcal{S}(\mathbb{R}^n)$

$$J_{\lambda}f = \left(C_{n-\lambda} \circ I_{\lambda} \circ C_{\lambda}^{-1}\right)f.$$

Proof. As $\mathcal{S}(\mathbb{R}^n) \subset \mathcal{H}_{\lambda} \subset \mathcal{S}'(\mathbb{R}^n)$, both sides are well-defined and belong to $\mathcal{S}'(\mathbb{R}^n)$. For $\operatorname{Re} \lambda > \frac{n}{2}$, both sides are given by convergent integrals, and the equality is proved by a change of variable. The general case follows by analytic continuation. The intertwining property of the Knapp–Stein operators can be formulated in the following way.

Proposition 4.2. Let $f \in C_c^{\infty}(S)$ and let $g \in G$ such that g^{-1} is defined on Supp(f). Then

$$J_{\lambda}(\rho_{\lambda}(g)f) = \rho_{n-\lambda}(g)(J_{\lambda}f),$$

where the two sides of the equation are viewed as tempered distributions on \mathbb{R}^n .

Proof. The condition implies that both f and $\rho_{\lambda}(g)f$ are contained in $\mathcal{S}(\mathbb{R}^n)$. Hence

$$J_{\lambda}(\rho_{\lambda}(g)f) = (C_{n-\lambda} \circ I_{\lambda} \circ C_{\lambda}^{-1})(\rho_{\lambda}(g)f)$$

= $(C_{n-\lambda} \circ I_{\lambda})(\pi_{\lambda}(g)C_{\lambda}^{-1}f) = (C_{n-\lambda} \circ \pi_{n-\lambda}(g)) \circ (I_{\lambda} \circ C_{\lambda}^{-1})f$
= $\rho_{n-\lambda}(g) \circ (C_{n-\lambda} \circ I_{\lambda} \circ C_{\lambda}^{-1})f = \rho_{n-\lambda}(g)(J_{\lambda}f).$

The following formulæ will be needed in the sequel

$$|\xi|^2 h_s(\xi) = \frac{n+s}{2} h_{s+2}(\xi), \tag{4.2}$$

$$\frac{\partial}{\partial \xi_n} h_s(\xi) = \frac{2s}{n+s-2} \xi_n h_{s-2}(\xi), \tag{4.3}$$

where at s = -n + 2, the last formula has to be understood by analytic continuation.

As the pole of the stereographic projection has been chosen in S', the map c maps the hyperplane $\{\xi_n = 0\}$ into S'. It allows to transfer the map M to the non-compact picture.

Lemma 4.3. Let $g \in G'$ be defined at $\xi \in \mathbb{R}^n$. Then

$$g(\xi)_n = \kappa(g,\xi)\xi_n. \tag{4.4}$$

Proof. Let $\xi \in \mathbb{R}^n$ and let $x = c(\xi) \in S \setminus \{-1\}$. Then

$$c(\xi)_n = \kappa(c,\xi)\xi_n, \qquad g(x)_n = \kappa(g,x)x_n, \qquad c^{-1}(x) = \kappa(c^{-1},x)x_n$$

the first equality by (4.1), the second by (3.1), and the third also by (4.1). As κ satisfies a cocycle relation, we get

$$\left(\left(c^{-1}\circ g\circ c\right)(\xi)\right)_n = \kappa\left(c^{-1}\circ g\circ c,\xi\right)\xi_n,$$

which gives (4.4).

Lemma 4.4. Let $\lambda \in \mathbb{C}$ and $f \in C^{\infty}(S)$. Then

$$C_{\lambda-1}(Mf)(\xi) = \xi_n C_{\lambda}(f)(\xi), \qquad \xi \in \mathbb{R}^n$$

Proof. Let $\xi = (\xi', \xi_n)$. By (4.1), $c(\xi)_n = \kappa(c, \xi)\xi_n$, so that

$$C_{\lambda-1}(Mf)(\xi) = \kappa(c,\xi)^{\lambda-1} Mf(c(\xi)) = \kappa(c,\xi)^{\lambda} \xi_n f(c(\xi)) = \xi_n C_{\lambda}(f)(\xi).$$

Abusing notation, M will be used for the operator (on $C^{\infty}(\mathbb{R}^n)$ say) of multiplication by ξ_n . The operator M maps $\mathcal{S}(\mathbb{R}^n)$ (resp. $\mathcal{S}'(\mathbb{R}^n)$) into $\mathcal{S}(\mathbb{R}^n)$ (resp. $\mathcal{S}'(\mathbb{R}^n)$), and for any $\lambda \in \mathbb{C}$, the operator M maps \mathcal{H}_{λ} into $\mathcal{H}_{\lambda-1}$ (Lemma 4.4).

Proposition 4.5. Let $\lambda \in \mathbb{C}$. The operator $M: \mathcal{H}_{\lambda} \longrightarrow \mathcal{H}_{\lambda-1}$ satisfies

 $\forall g \in G', \qquad M \circ \rho_{\lambda}(g) = \rho_{\lambda-1}(g) \circ M.$

Otherwise said, the operator M intertwines the representations $\pi_{\lambda|G'}$ and $\pi_{\lambda-1|G'}$.

Proof. Let $f \in \mathcal{H}_{\lambda}$. Then

$$(M \circ \rho_{\lambda}(g)) f(\xi) = \xi_n \kappa (g^{-1}, \xi)^{\lambda} f(g^{-1}(\xi)) = \kappa (g^{-1}, \xi)^{\lambda - 1} (g^{-1}(\xi))_n f(g^{-1}(\xi))$$

= $\rho_{\lambda - 1}(g) (Mf) (g^{-1}(\xi))$

and the statement follows.

Having introduced the non-compact version of the main ingredients, we observe that the Knapp–Stein operators are convolution operators, whereas M is the multiplication by an elementary polynomial. So the Fourier transform is well-fitted for computations in this context. Define the Fourier transform on \mathbb{R}^n as usual by

$$\widehat{f}(\eta) = \int_{\mathbb{R}^n} e^{i\langle \eta, \xi \rangle} f(\xi) d\xi$$

initially for functions in $\mathcal{S}(\mathbb{R}^n)$ and extend by duality to $\mathcal{S}'(\mathbb{R}^n)$.

The Fourier transform of h_s is given by

$$\widehat{h}_s = 2^{n+s} \pi^{\frac{n}{2}} h_{-n-s}.$$

For this result see, e.g., [5].

Thanks to the above observations, it is possible to define the composition $M \circ J_{\lambda}$ as an operator from $\mathcal{S}(\mathbb{R}^n)$ into $\mathcal{S}'(\mathbb{R}^n)$.

Lemma 4.6. For $f \in \mathcal{S}(\mathbb{R}^n)$,

$$\left((M \circ J_{\lambda})f \right)^{\widehat{}}(\eta) = -i\pi^{\frac{n}{2}} 2^{-n+2\lambda} \left(h_{n-2\lambda}(\eta) \frac{\partial \widehat{f}}{\partial \eta_n}(\eta) + \frac{n-2\lambda}{n-\lambda-1} \eta_n h_{n-2-2\lambda}(\eta) \widehat{f}(\eta) \right).$$
(4.5)

Proof. As observed earlier, the Knapp–Stein operator J_{λ} is a convolution operator on \mathbb{R}^n , so that

$$(J_{\lambda}f)^{\widehat{}}(\eta) = \widehat{h}_{-2n+2\lambda}(\eta)\widehat{f}(\eta) = 2^{-n+2\lambda}\pi^{\frac{n}{2}}h_{n-2\lambda}(\eta)\widehat{f}(\eta).$$

Next, for any distribution $\varphi \in \mathcal{S}'(\mathbb{R}^n)$

$$\widehat{M\varphi} = -i\frac{\partial}{\partial\eta_n}\widehat{\varphi}$$

and (4.5) follows, using (4.3).

The composition $J_{n-\lambda-1} \circ M \circ J_{\lambda}$ is not well-defined on $\mathcal{S}(\mathbb{R}^n)$. However, a formal computation (using again Fourier transforms) can be made and leads to a differential operator, which is at the origin of the definition (4.6) below. In order to give a rigorous argument, it is necessary to follow an indirect route.

For $\lambda \in \mathbb{C}$, let E_{λ} be the differential operator on \mathbb{R}^n defined by

$$E_{\lambda} = (2\lambda - n + 2)\frac{\partial}{\partial\xi_n} + \xi_n \Delta, \qquad (4.6)$$

where $\Delta = \sum_{j=1}^{n} \frac{\partial^2}{\partial \xi_j^2}$ is the usual Laplacian on \mathbb{R}^n . Notice that the operator E_{λ} maps $\mathcal{S}(\mathbb{R}^n)$ (resp. $\mathcal{S}'(\mathbb{R}^n)$) into $\mathcal{S}(\mathbb{R}^n)$ (resp. $\mathcal{S}'(\mathbb{R}^n)$), so that we may consider the composition $J_{\lambda+1} \circ E_{\lambda}$. Lemma 4.7. For $f \in \mathcal{S}(\mathbb{R}^n)$,

$$\left((J_{\lambda+1} \circ E_{\lambda}) f \right)^{\widehat{}}(\eta)$$

$$= -i2^{-n+2+2\lambda} \pi^{\frac{n}{2}} \left((\lambda - n + 1)h_{n-2\lambda}(\eta) \frac{\partial \widehat{f}}{\partial \eta_n}(\eta) + (2\lambda - n)\eta_n h_{-2\lambda+n-2}(\eta) \widehat{f}(\eta) \right).$$

$$(4.7)$$

Proof. Using (4.2) and (4.3),

$$(E_{\lambda}f)^{\widehat{}}(\eta) = (-i)(2\lambda - n + 2)\eta_{n}\widehat{f}(\eta) + (-i)\frac{\partial}{\partial\eta_{n}}(-|\eta|^{2}\widehat{f}(\eta))$$
$$= (-i)\left((2\lambda - n)\eta_{n}\widehat{f}(\eta) - |\eta|^{2}\frac{\partial\widehat{f}}{\partial\eta_{n}}(\eta)\right).$$

Next

$$\left(\left(J_{\lambda+1} \circ E_{\lambda} \right) f \right)^{\widehat{}}(\eta) = \widehat{h}_{-2n+2\lambda+2}(\eta) \left(E_{\lambda} f \right)^{\widehat{}}(\eta)$$

= $2^{-n+2+2\lambda} \pi^{\frac{n}{2}}(-i) \left((2\lambda - n)\eta_n h_{n-2-2\lambda}(\eta) \widehat{f}(\eta) - (-\lambda + n - 1)h_{n-2\lambda}(\eta) \frac{\partial \widehat{f}}{\partial \eta_n}(\eta) \right).$

Comparison of (4.5) and (4.7) yields the next result.

Proposition 4.8.

$$M \circ J_{\lambda} = \frac{1}{4(\lambda - n + 1)} J_{\lambda + 1} \circ E_{\lambda}.$$
(4.8)

Remark 4.9. This equality has to be understood as an equality of operators from $\mathcal{S}(\mathbb{R}^n)$ into $\mathcal{S}'(\mathbb{R}^n)$. For $\lambda = n - 1$, $J_{\lambda+1} = J_n$ is equal (up to a constant $\neq 0$) to the operator $f \mapsto (\int_{\mathbb{R}^n} f(\xi) d\xi)$ 1. Now for $f \in \mathcal{S}(\mathbb{R}^n)$, $\int_{\mathbb{R}^n} E_{\lambda} f(\xi) d\xi = 0$ as is easily seen by integration by parts. Hence, $J_{\lambda+1} \circ E_{\lambda}$ vanishes for $\lambda = n - 1$, so that (4.8) has to be interpreted as a residue formula.

Proposition 4.10. Let $f \in C_c^{\infty}(\mathbb{R}^n)$ and assume that $g \in G'$ is such that g^{-1} is defined on $\operatorname{Supp}(f)$. Then

$$(E_{\lambda} \circ \rho_{\lambda}(g))f = (\rho_{\lambda+1}(g) \circ E_{\lambda})f.$$

Proof. As a consequence of the intertwining property of J_{λ} (Proposition 4.2) and of M (Proposition 3.1),

$$(M \circ J_{\lambda})(\rho_{\lambda}(g)f) = \rho_{n-\lambda-1}(g)(M \circ J_{\lambda})f.$$

Hence, by (4.8) (assuming for a while that $\lambda \neq n-1$)

$$(J_{\lambda+1} \circ E_{\lambda})\rho_{\lambda}(g)f = \rho_{n-\lambda-1}(g)((J_{\lambda+1} \circ E_{\lambda})f).$$

Now $\operatorname{Supp}(E_{\lambda}f) \subset \operatorname{Supp}(f)$, so that g^{-1} is defined on $\operatorname{Supp}(E_{\lambda}f)$. Hence, by Proposition 4.2

$$(\rho_{n-\lambda-1}(g) \circ J_{\lambda+1})E_{\lambda}f = (J_{\lambda+1} \circ \rho_{\lambda+1}(g))E_{\lambda}f$$

so that

$$J_{\lambda+1}\big((E_{\lambda} \circ \rho_{\lambda}(g))f\big) = J_{\lambda+1}\big((\rho_{\lambda+1}(g) \circ E_{\lambda})f\big).$$

Now, for λ generic, the operator $J_{\lambda+1}$ is injective on $\mathcal{S}(\mathbb{R}^n)$, hence

$$E_{\lambda} \circ \rho_{\lambda}(g)f = \rho_{\lambda+1}(g) \circ E_{\lambda}f.$$

The general result follows by continuity, as the family E_{λ} depends holomorphically on λ .

Proof of Theorem 3.2. The covariance property of the differential operator E_{λ} allows to construct a *global* differential operator on S which is expressed in the non-compact picture to E_{λ} . In fact to fully cover the sphere S, we only need another chart, which can be chosen as the analog of the map c but constructed from the stereographic projection corresponding to the pole $\mathbf{1} = (1, 0, \dots, 0)$ instead of $-\mathbf{1}$. Consider the element s of G given by

$$s = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 \\ 0 & -1 & 0 & 0 & \dots & 0 \\ 0 & 0 & -1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix}.$$

Then s acts on S by

$$s(x) = s \begin{pmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} -x_0 \\ -x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

In particular, s maps -1 to 1 and preserves S'. In the non-compact picture, the map s is defined for $\xi \neq 0$ and is given by

$$(\xi_1,\xi_2,\ldots,\xi_n)\longmapsto \left(-\frac{\xi_1}{|\xi|^2},\frac{\xi_2}{|\xi|^2},\ldots,\frac{\xi_n}{|\xi|^2}\right).$$

$$(4.9)$$

The two charts $\xi \mapsto c(\xi)$ and $\xi \mapsto s(c(\xi))$ cover S. Their common domain corresponds to $\xi \neq 0$, the change of chart being given by (4.9), which is the local expression in the non-compact picture of the transform s. So Proposition 4.10, when applied to g = s is exactly what is needed to prove that there is a global differential operator \mathbf{E}_{λ} on S which is expressed by E_{λ} in the non-compact model. Clearly \mathbf{E}_{λ} satisfies

$$\forall g \in G', \qquad \mathbf{E}_{\lambda} \circ \pi_{\lambda}(g) = \pi_{\lambda+1}(g) \circ \mathbf{E}_{\lambda}.$$

By (4.8),

$$M \circ I_{\lambda} = \frac{1}{4(\lambda - n + 1)} I_{\lambda + 1}(g) \circ \mathbf{E}_{\lambda}.$$

Compose both sides with $I_{n-\lambda-1}$ and use (2.3) to get

$$\mathbf{D}_{\lambda} = \frac{\pi^{-n}}{4(\lambda - n + 1)\Gamma(n - \lambda - 1)\Gamma(\lambda + 1)} \mathbf{E}_{\lambda}$$

or equivalently

$$\widetilde{\mathbf{D}}_{\lambda} = -\frac{1}{4\pi^n} \mathbf{E}_{\lambda}.$$

This relation implies in particular that $\widetilde{\mathbf{D}}_{\lambda}$ is a differential operator on S.

5 The families $D_{\lambda,N}$, $\widetilde{D}_{\lambda,N}$ and $D_N(\lambda)$

For $N \geq 1$, set

$$\widetilde{\mathbf{D}}_{\lambda,N} = \widetilde{\mathbf{D}}_{\lambda+N-1} \circ \cdots \circ \widetilde{\mathbf{D}}_{\lambda}.$$

Let M^N be the operator on $C^{\infty}(S)$ given by multiplication by x_n^N . Set

$$\mathbb{D}_{\lambda,N} = I_{n-N-\lambda} \circ M^N \circ I_{\lambda}.$$

Proposition 5.1.

i) $\widetilde{\mathbf{D}}_{\lambda,N}$ and $\mathbb{D}_{\lambda,N}$ are differential operators on S which intertwine $\pi_{\lambda|G'}$ and $\pi_{\lambda+N|G'}$. ii)

$$\widetilde{\mathbf{D}}_{\lambda,N} = \pi^{n(N-1)} \Gamma(\lambda+N) \Gamma(n-\lambda-N) \mathbb{D}_{\lambda,N}.$$
(5.1)

Proof. Repeated uses of (3.2) show that, for any $\mu \in \mathbb{C}$, M^N intertwines $\pi_{\mu|G'}$ and $\pi_{\mu-N|G'}$. Hence $\mathbb{D}_{\lambda,N}$ intertwines $\pi_{\lambda|G'}$ and $\pi_{\lambda+N|G'}$. On the other hand, repeated uses of (3.3) proves that $\widetilde{\mathbf{D}}_{\lambda,N}$ also intertwines $\pi_{\lambda|G'}$ and $\pi_{\lambda+N|G'}$.

Next, $\widetilde{\mathbf{D}}_{\lambda,N}$ as a composition of differential operators on S is a differential operator. So it remains to prove (5.1).

Substitute $\mathbf{D}_{\lambda+j} = I_{n-\lambda-j-1} \circ M \circ I_{\lambda+j}$ for $0 \le j \le N-1$ to get

$$\mathbf{D}_{\lambda+N-1} \circ \mathbf{D}_{\lambda+N-2} \circ \cdots \circ \mathbf{D}_{\lambda}$$

= $I_{-\lambda+n-N} \circ \cdots \circ I_{-\lambda+n-j-1} \circ M \circ I_{\lambda+j} \circ I_{-\lambda+n-j} \circ M \circ I_{\lambda+j-1} \circ \cdots \circ I_{\lambda},$

and use (2.3) repeatedly for $\lambda + j$ to obtain

$$\mathbf{D}_{\lambda+N-1} \circ \mathbf{D}_{\lambda+N-2} \circ \cdots \circ \mathbf{D}_{\lambda}$$

= $\pi^{n(N-1)} \left(\prod_{j=1}^{N-1} \Gamma(\lambda+j) \Gamma(n-\lambda-j) \right)^{-1} I_{-\lambda+n-N} \circ M^N \circ I_{\lambda}.$

Multiply by the appropriate Γ factors coming from (3.4) to get the formula.

The group G' acts conformally on S'. The scalar principal series for $G' \simeq SO_0(1, n)$ is defined as follows: for $\mu \in \mathbb{C}$, for $g \in G'$ and $f \in C^{\infty}(S')$,

$$\pi'_{\mu}(g)f(x) = \kappa \left(g^{-1}, x\right)^{\mu} f\left(g^{-1}(x)\right), \qquad x \in S'.$$
(5.2)

Let res: $C^{\infty}(S) \longrightarrow C^{\infty}(S')$ be the restriction map from S to S', defined for $f \in C^{\infty}(S)$ by $(\operatorname{res} f)(x) = f(x), x \in S'$. The last remark makes clear that for $\lambda \in \mathbb{C}$ and for $g \in G'$,

$$\operatorname{res} \circ \pi_{\lambda}(g) = \pi_{\lambda}'(g) \circ \operatorname{res}.$$
(5.3)

Define the differential operator $\mathbf{D}_N(\lambda) \colon C^\infty(S) \longrightarrow C^\infty(S')$ by

$$\mathbf{D}_N(\lambda) = \operatorname{res} \circ \mathbf{\widetilde{D}}_{\lambda,N}.$$

Theorem 5.2. $\mathbf{D}_N(\lambda)$ satisfies

$$\forall g \in G' \qquad \mathbf{D}_N(\lambda) \circ \pi_\lambda(g) = \pi'_{\lambda+N}(g) \circ \mathbf{D}_N(\lambda).$$

The proof follows immediately from the covariance property of $\widetilde{\mathbf{D}}_{\lambda,N}$ and of the restriction map (5.3).

6 The family $E_N(\lambda)$

The previous constructions of differential operators made for S and S' can be made in a similar manner in the non compact picture, i.e., for \mathbb{R}^n and \mathbb{R}^{n-1} . For $N \in \mathbb{N}$, let $E_{\lambda,N}$ be defined by

$$E_{\lambda,N} = E_{\lambda+N-1} \circ \cdots \circ E_{\lambda}$$

and

$$E_N(\lambda) = \operatorname{res} \circ E_{\lambda,N}$$

where res is the restriction from \mathbb{R}^n to \mathbb{R}^{n-1} . Then $E_{\lambda,N}$ is a differential operator on \mathbb{R}^n which is covariant with respect to $(\rho_{\lambda|G'}, \rho_{\lambda+N|G'})$ and $E_N(\lambda)$ is a differential operator from \mathbb{R}^n to \mathbb{R}^{n-1} which is covariant with respect to $(\rho_{\lambda|G'}, \rho'_{\lambda+N})$.³

In this section, for the sake of completeness, we compare $E_N(\lambda)$ with Juhl's operator for the non compact model. For $\xi \in \mathbb{R}^n$, introduce the notation $\xi = (\xi', \xi_n)$ where $\xi' \in \mathbb{R}^{n-1}$. Let $\Delta' = \sum_{j=1}^{n-1} \frac{\partial^2}{\partial \xi_j^2}$.

Proposition 6.1. Let $E: C^{\infty}(\mathbb{R}^n) \longrightarrow C^{\infty}(\mathbb{R}^{n-1})$ be a differential operator and assume that E is covariant with respect to $(\rho_{\lambda|G'}, \rho'_{\lambda+N})$ for some $N \in \mathbb{N}$. Then there exits a family of complex constants $a_j, 0 \leq j \leq [\frac{N}{2}]$ such that

$$E = \operatorname{res} \circ \sum_{j=0}^{\left[\frac{N}{2}\right]} a_j \left(\frac{\partial}{\partial \xi_n}\right)^{N-2j} \Delta'^j.$$

Proof. By the definition of a differential operator from \mathbb{R}^n to \mathbb{R}^{n-1} , E can be written as a locally finite sum

$$\sum_{i,J} a_{i,J}(\xi') \operatorname{res} \circ \left(\frac{\partial}{\partial \xi_n}\right)^i \partial^J,$$

where $J = (j_1, j_2, \dots, j_{n-1})$ is a (n-1)-tuple, $\partial^J = \prod_{k=1}^{n-1} \left(\frac{\partial}{\partial \xi_k}\right)^{j_k}$ and $a_{i,J}$ is a smooth function of $\xi' \in \mathbb{R}^{n-1}$.

³The representation ρ' is the principal series for G' realized in the \mathbb{R}^{n-1} , defined in analogy with (5.2).

$$\sum_{i,j} a_{i,j} \left(\frac{\partial}{\partial \xi_n}\right)^i (\Delta')^j$$

and finally the covariance under the action of the dilations forces i + 2j = N. The statement follows.

Notice that the proof uses only the covariance property for the parabolic subgroup of affine conformal diffeomorphisms of \mathbb{R}^{n-1} . The full covariance condition implies further conditions on the coefficients $a_{i,j}$, explicitly written by A. Juhl (see [6], condition (5.1.2) for N even and (5.1.22) for N odd), proving in particular that there exists (up to a constant) a unique covariant differential operator. Now let

$$E_N(\lambda) = \sum_{j=0}^{\left[\frac{N}{2}\right]} a_j(\lambda, N) \left(\frac{\partial}{\partial \xi_n}\right)^{N-2j} \Delta'^j,$$

where $a_i(\lambda, N)$ are complex numbers.

To find the ratio between $E_N(\lambda)$ and the corresponding Juhl's operator, it is enough to know some coefficient of $E_N(\lambda)$ and to compare it to the corresponding coefficient of Juhl's operator. It turns out that the coefficient $a_0(\lambda, N)$ is rather easy to compute.

Lemma 6.2.

i) For $k \in \mathbb{N}$ and $\mu \in \mathbb{C}$,

$$E_{\mu}\xi_{n}^{k} = k(2\mu - n + 1 + k)\xi_{n}^{k-1}.$$

ii) For $N \in \mathbb{N}$ and for $\lambda \in \mathbb{C}$,

$$E_{\lambda,N}(\xi_n^N) = N!(2\lambda - n + N + 1)(2\lambda - n + N + 2)\cdots(N + 2\lambda - n + 2N).$$

iii) The constant $a_0(\lambda, N)$ is given by

$$a_0(\lambda, N) = (2\lambda - n + N + 1)(2\lambda - n + N + 2)\cdots(2\lambda - n + 2N)$$

Proof. Let f be a function on \mathbb{R}^n which depends only on ξ_n . Then $\Delta' f = 0$, and

$$E_{\mu}f = \left((2\mu - n + 2)\frac{\partial}{\partial\xi_n} + \xi_n\frac{\partial^2}{\partial\xi_n^2}\right)f,$$

so that i) and ii) are reduced to elementary one variable computations. For iii) observe that

$$E_{\lambda,N}(\xi_n^N) = a_0(\lambda,N) \left(\frac{\partial}{\partial \xi_n}\right)^N (\xi_n^N) + 0 + \dots + 0 = N! a_0(\lambda,N),$$

hence $E_N(\lambda)(\xi_n^N) = N! a_0(\lambda, N)$ and *iii*) follows.

The comparison with Juhl's operator is then easy. As his normalization depends on the parity of N, one has to examine two cases.

• In the even case, $E_N(\lambda)$ is obtained by multiplying Juhl's operator by

$$\frac{N!}{\left(\frac{N}{2}\right)!}2^{\frac{N}{2}-1}\prod_{j=1}^{\frac{N}{2}}(2\lambda - n + N + 2j).$$

• In the odd case, $E_N(\lambda)$ is obtained by multiplying Juhl's operator by

$$\frac{N!}{\left(\frac{N-1}{2}\right)!} 2^{\frac{N+1}{2}} \prod_{j=0}^{\frac{N-1}{2}} (2\lambda - n + N + 1 + 2j).$$

7 The operator D_{λ} in the ambient space model

This last section is devoted to another (simpler) construction of (a multiple of) the operator \mathbf{D}_{λ} , using the *ambient space* realization of the principal series.

Let Ξ^+ be the positive light cone,

$$\Xi^{+} = \left\{ \mathbf{x} \in \mathbf{E}, \, Q(\mathbf{x}) = [\mathbf{x}, \mathbf{x}] = 0, \, t(\mathbf{x}) > 0 \right\}$$

For $\lambda \in \mathbb{C}$, let

$$\mathcal{H}_{\lambda} = \left\{ F \in C^{\infty}(\Xi^+), \, F(t\mathbf{x}) = t^{-\lambda}F(\mathbf{x}), \text{ for } t \in \mathbb{R}^+ \right\}.$$

The space \mathcal{H}_{λ} is in one-to-one correspondence with the space $C^{\infty}(S)$ through the map R_{λ}

$$\mathcal{H}_{\lambda} \ni F \longmapsto R_{\lambda}F \in C^{\infty}(S), \qquad R_{\lambda}F(x) = F((1,x))$$

The space \mathcal{H}_{λ} inherits the corresponding topology. For $g \in G$, and $F \in \mathcal{H}_{\lambda}$, let

$$\Pi_{\lambda}(g)F = F \circ g^{-1}.$$

Then Π_{λ} defines a representation of G on \mathcal{H}_{λ} and it is easily verified that

$$R_{\lambda} \circ \Pi_{\lambda}(g) = \pi_{\lambda}(g) \circ R_{\lambda}, \tag{7.1}$$

so that Π_{λ} is yet another model for the representation π_{λ} of G.

Let $\Box = \frac{\partial^2}{\partial t^2} - \sum_{j=0}^n \frac{\partial^2}{\partial x_j^2}$ be the d'Alembertian on **E**. It satisfies, for any $g \in G$ and F a smooth function on **E**

function on ${\bf E}$

$$\Box(F \circ g) = (\Box F) \circ g. \tag{7.2}$$

The following lemma, which I learnt from [3] is a key result for what follows.

Lemma 7.1. Let F_1 , F_2 be two smooth functions defined in a neighborhood of Ξ^+ , positively homogeneous of degree $-\frac{n}{2} + 1$ and which coincide on Ξ^+ . Then $\Box F_1$ and $\Box F_2$ coincide on Ξ^+ .

Proof. The function $F_1 - F_2$ vanishes on Ξ^+ . Notice that $dQ(\mathbf{x}) \neq 0$ for any $\mathbf{x} \in \Xi^+$. Hence, there exists a smooth function G defined on a neighborhood of Ξ^+ such that

$$F_1(\mathbf{x}) - F_2(\mathbf{x}) = Q(\mathbf{x})G(\mathbf{x}).$$

Moreover, G is positively homogeneous of degree $-\frac{n}{2} - 1$. Now, for any smooth function H on **E**

$$\Box(QH) = 2(n+2)H + 4EH + Q\Box H,$$

where $E = t \frac{\partial}{\partial t} + \sum_{j=0}^{n} x_j \frac{\partial}{\partial x_j}$ is the Euler operator. As G is homogeneous of degree $-\frac{n}{2} - 1$,

$$EG(\mathbf{x}) = \left(-\frac{n}{2} - 1\right)G(\mathbf{x}),$$

and hence $\Box(QG)(x) = 0$ for $x \in \Xi^+$. The lemma follows.

The next result is a reformulation of the previous lemma.

Lemma 7.2. Let $F \in \mathcal{H}_{\frac{n}{2}-1}$. Extend F smoothly to a positively homogeneous function of degree $-\frac{n}{2} + 1$ to neighborhood of Ξ^+ . Then the restriction to Ξ^+ of $\Box F$ does not depend on the extension.

The operator \Box induces a map from $\mathcal{H}_{\frac{n}{2}-1}$ to $\mathcal{H}_{\frac{n}{2}+1}$ and intertwines the action of G. Let Δ_S be the operator defined on $C^{\infty}(S)$ by

$$\Delta_S = R_{\frac{n}{2}+1} \circ \Box \circ R_{\frac{n}{2}-1}^{-1}.$$

The invariance of \Box (see (7.2)) and the covariance of R_{λ} (see (7.1)) imply the following proposition.

Proposition 7.3. The operator Δ_S (conformal Laplacian or Yamabe operator on S) is a differential operator on S which is covariant with respect to $(\pi_{\frac{n}{2}-1}, \pi_{\frac{n}{2}+1})$.

Let \mathbf{B}_{μ} be the differential operator on \mathbf{E} defined by

$$\mathbf{B}_{\mu}F(\mathbf{x}) = x_n \Box F(\mathbf{x}) - 2\mu \frac{\partial F}{\partial x_n}.$$

Lemma 7.4. Let $\mu \in \mathbb{C}$. Let F be a smooth function on E. Then, on $\{x_n \neq 0\}$,

$$\mathbf{B}_{\mu}F(\mathbf{x}) = x_n |x_n|^{-\mu} \Box \left(|x_n|^{\mu}F \right)(\mathbf{x}) + \mu(\mu - 1) \frac{1}{x_n} F(\mathbf{x}).$$
(7.3)

Proof. By an elementary calculation,

$$\Box \left(|x_n|^{\mu} F \right)(\mathbf{x}) = |x_n|^{\mu} \Box F(\mathbf{x}) - 2\mu \operatorname{sgn}(x_n) |x_n|^{\mu-1} \frac{\partial F}{\partial x_n}(\mathbf{x}) - \mu(\mu-1) |x_n|^{\mu-2} F(\mathbf{x}),$$

so that

$$\Box (|x_n|^{\mu}F) + \mu(\mu - 1)|x_n|^{\mu - 2}F = \operatorname{sgn}(x_n)|x_n|^{\mu - 1}\mathbf{B}_{\mu}F$$

The conclusion follows, by noticing that $x_n = \operatorname{sgn}(x_n)|x_n|$.

Proposition 7.5. Let $g \in G'$. Then for F a smooth function on \mathbf{E} ,

$$\mathbf{B}_{\mu}(F \circ g) = (\mathbf{B}_{\mu}F) \circ g.$$

Proof. As $g \in G'$, the coordinate x_n is unchanged by the action of g, and the action of g commutes with $\frac{\partial}{\partial x_n}$ and with \Box . The result follows.

Proposition 7.6. Let $F \in \mathcal{H}_{\lambda}$. Extend F smoothly to a neighborhood of Ξ^+ as a positively homogeneous function of degree $-\lambda$. Then the restriction to Ξ^+ of $\mathbf{B}_{\lambda-\frac{n}{2}+1}F$ does not depend on the extension.

Proof. The function $|x_n|^{\lambda-\frac{n}{2}+1}F(\mathbf{x})$ is homogenous of degree $-\frac{n}{2}+1$, and hence, by Lemma 7.2, for $x \in \Xi^+$, $\Box(|x_n|^{\lambda-\frac{n}{2}+1}F)(\mathbf{x})$ only depend on the values of F on Ξ^+ . Hence, by (7.3), for \mathbf{x} in Ξ^+ , $x_n \neq 0$, $\mathbf{B}_{\lambda-\frac{n}{2}+1}F(\mathbf{x})$ does not depend on the extension of F. The result follows by continuity.

Proposition 7.7. The differential operator $\mathbf{B}_{\lambda-\frac{n}{2}+1}$ induces a map from \mathcal{H}_{λ} into $\mathcal{H}_{\lambda+1}$, which commutes with the action of G'.

Proof. The invariance follows from Proposition 7.5.

Having constructed a covariant operator in the ambient space model, it is possible to express it both in the non-compact and in the compact picture.

Proposition 7.8. The local expression of the operator $\mathbf{B}_{\lambda-\frac{n}{2}+1}$ in the non compact picture is equal to $-E_{\lambda}$.

Proof. Let f be a smooth function on \mathbb{R}^n . Recall the map c (cf. (4.1)) which realizes the passage from \mathbb{R}^n to S. Its inverse is given by

$$S \setminus \{-1\} \ni (x_0, x_1, \dots, x_n) \longmapsto \left(\frac{x_1}{1+x_0}, \dots, \frac{x_n}{1+x_0}\right).$$

So map f to a function on S by

$$C_{\lambda}^{-1}f(x) = (1+x_0)^{-\lambda} f\left(\frac{x_1}{1+x_0}, \dots, \frac{x_n}{1+x_0}\right).$$

Consider the function F on \mathbf{E} defined by

$$F(\mathbf{x}) = (t+x_0)^{-\lambda} f\left(\frac{x_1}{t+x_0}, \dots, \frac{x_n}{t+x_0}\right)$$

Then F is homogenous of degree $-\lambda$ and coincide on S with $C_{\lambda}^{-1}f$. To compute $\mathbf{B}_{\lambda-\frac{n}{2}+1}F$, first observe that

$$\frac{\partial F}{\partial t} = \frac{\partial F}{\partial x_0}, \qquad \frac{\partial^2 F}{\partial t^2} = \frac{\partial^2 F}{\partial x_0^2},$$

so that

$$\Box F = -\sum_{j=1}^{n} \frac{\partial^2 F}{\partial x_j^2}.$$

Hence

$$\mathbf{B}_{\lambda-\frac{n}{2}+1}F(\mathbf{x}) = -(t+x_0)^{-\lambda-2}x_n(\Delta f)\left(\frac{x_1}{t+x_0},\dots,\frac{x_n}{t+x_0}\right) -2\left(\lambda-\frac{n}{2}+1\right)(t+x_0)^{-\lambda}(t+x_0)^{-1}\frac{\partial f}{\partial\xi_n}\left(\frac{x_1}{t+x_0},\dots,\frac{x_n}{t+x_0}\right).$$

Now letting $\mathbf{x} = (1, c(\xi)),$

$$\mathbf{B}_{\lambda-\frac{n}{2}+1}F(1,c(\xi)) = -\xi_n \Delta f(\xi) - (2\lambda - n + 2)\frac{\partial f}{\partial \xi_n}(\xi).$$

A comparison with (4.6) implies the result.

Proposition 7.9. The expression of the operator $\mathbf{B}_{\lambda-\frac{n}{2}+1}$ on S is given by

$$x_n |x_n|^{-\lambda + \frac{n}{2} - 1} \Delta_S \circ |x_n|^{\lambda - \frac{n}{2} + 1} + \left(\lambda - \frac{n}{2} + 1\right) \left(\lambda - \frac{n}{2}\right) \frac{1}{x_n}.$$

The expression, a priori defined on $x_n \neq 0$ can be continued continuously to all of S.

Proof. Let $f \in C^{\infty}(S)$. Then

$$F(\mathbf{x}) = \left(x_0^2 + \dots + x_n^2\right)^{-\lambda} f\left(\frac{x_0}{\sqrt{x_0^2 + \dots + x_n^2}}, \dots, \frac{x_n}{\sqrt{x_0^2 + \dots + x_n^2}}\right)$$

is a function defined on $\mathbf{E} \setminus \{0\}$ which is positively homogeneous of degree $-\lambda$ and such that for $x \in S$,

$$F(1,x) = f(x)$$

By (7.3) with $\mu = \lambda - \frac{n}{2} + 1$ and for $\mathbf{x} \neq 0, x_n \neq 0$,

$$\mathbf{B}_{\lambda-\frac{n}{2}+1}F(\mathbf{x}) = x_n |x_n|^{-\lambda+\frac{n}{2}+1} \Box \left(|x_n|^{\lambda-\frac{n}{2}+1}F \right)(\mathbf{x}) + \left(\lambda - \frac{n}{2} + 1\right) \left(\lambda - \frac{n}{2}\right) \frac{1}{x_n} F(\mathbf{x}).$$

The function $|x_n|^{\lambda-\frac{n}{2}+1}F(\mathbf{x})$ is positively homogeneous of degree $-\frac{n}{2}+1$. Thus, by Lemma 7.2 and the definition of the Yamabe operator Δ_S , for $x \in S$,

$$\mathbf{B}_{\lambda-\frac{n}{2}+1}F(1,x) = x_n |x_n|^{-\lambda+\frac{n}{2}-1} \Delta_S \left(|x_n|^{\lambda-\frac{n}{2}+1} f \right)(x) + \left(\lambda - \frac{n}{2} + 1\right) \left(\lambda - \frac{n}{2}\right) \frac{1}{x_n} f(x),$$

from which the statement follows, at least for $x_n \neq 0$. As $\mathbf{B}_{\lambda-\frac{n}{2}+1}$ induces a smooth differential operator on S, the formula determines the operator on all of S by continuity.

Acknowledgements

It is a pleasure to thank the anonymous referees for their contributions which helped to improve and reshape the initial version of this article.

References

- Beckmann R., Clerc J.-L., Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group, J. Funct. Anal. 262 (2012), 4341–4376.
- [2] Clerc J.-L., Covariant bi-differential operators on matrix space, Ann. Inst. Fourier (Grenoble), to appear, arXiv:1601.07016.
- [3] Eelbode D., Souček V., Conformally invariant powers of the Dirac operator in Clifford analysis, *Math. Methods Appl. Sci.* 33 (2010), 1558–1570.
- Fischmann M., Juhl A., Somberg P., Conformal symmetry breaking differential operators on differential forms, arXiv:1605.04517.
- [5] Gel'fand I.M., Shilov G.E., Generalized functions. Vol. I: Properties and operations, Academic Press, New York – London, 1964.
- [6] Juhl A., Families of conformally covariant differential operators, Q-curvature and holography, Progress in Mathematics, Vol. 275, Birkhäuser Verlag, Basel, 2009.
- [7] Knapp A.W., Representation theory of semisimple groups. An overview based on examples, *Princeton Mathematical Series*, Vol. 36, Princeton University Press, Princeton, NJ, 1986.
- [8] Kobayashi T., Kubo T., Pevzner M., Conformal symmetry breaking operators for differential forms on spheres, *Lecture Notes in Math.*, Vol. 2170, Springer, Singapore, 2016.

- Kobayashi T., Pevzner M., Differential symmetry breaking operators: I. General theory and F-method, Selecta Math. (N.S.) 22 (2016), 801–845, arXiv:1301.2111.
- [10] Kobayashi T., Pevzner M., Differential symmetry breaking operators: II. Rankin–Cohen operators for symmetric pairs, *Selecta Math. (N.S.)* 22 (2016), 847–911, arXiv:1301.2111.
- [11] Kobayashi T., Speh B., Symmetry breaking for representations of rank one orthogonal groups, *Mem. Amer. Math. Soc.* 238 (2015), v+110 pages, arXiv:1310.3213.
- [12] Olver P.J., Classical invariant theory, London Mathematical Society Student Texts, Vol. 44, Cambridge University Press, Cambridge, 1999.