|
SIGMA 13 (2017), 026, 18 pages arXiv:1612.01856
https://doi.org/10.3842/SIGMA.2017.026
Another Approach to Juhl's Conformally Covariant Differential Operators from $S^n$ to $S^{n-1}$
Jean-Louis Clerc
Institut Elie Cartan de Lorraine, Université de Lorraine, France
Received December 07, 2016, in final form April 11, 2017; Published online April 19, 2017
Abstract
A family $({\mathbf D}_\lambda)_{\lambda\in \mathbb C}$ of differential operators on the sphere $S^n$ is constructed. The operators are conformally covariant for the action of the subgroup of conformal transformations of $S^n$ which preserve the smaller sphere $S^{n-1}\subset S^n$. The family of conformally covariant differential operators from $S^n$ to $S^{n-1}$ introduced by A. Juhl is obtained by composing these operators on $S^n$ and taking restrictions to $S^{n-1}$.
Key words:
conformally covariant differential operators; Juhl's covariant differential operators.
pdf (416 kb)
tex (19 kb)
References
-
Beckmann R., Clerc J.-L., Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group, J. Funct. Anal. 262 (2012), 4341-4376.
-
Clerc J.-L., Covariant bi-differential operators on matrix space, Ann. Inst. Fourier (Grenoble), to appear, arXiv:1601.07016.
-
Eelbode D., Souček V., Conformally invariant powers of the Dirac operator in Clifford analysis, Math. Methods Appl. Sci. 33 (2010), 1558-1570.
-
Fischmann M., Juhl A., Somberg P., Conformal symmetry breaking differential operators on differential forms, arXiv:1605.04517.
-
Gel'fand I.M., Shilov G.E., Generalized functions. Vol. I: Properties and operations, Academic Press, New York - London, 1964.
-
Juhl A., Families of conformally covariant differential operators, $Q$-curvature and holography, Progress in Mathematics, Vol. 275, Birkhäuser Verlag, Basel, 2009.
-
Knapp A.W., Representation theory of semisimple groups. An overview based on examples, Princeton Mathematical Series, Vol. 36, Princeton University Press, Princeton, NJ, 1986.
-
Kobayashi T., Kubo T., Pevzner M., Conformal symmetry breaking operators for differential forms on spheres, Lecture Notes in Math., Vol. 2170, Springer, Singapore, 2016.
-
Kobayashi T., Pevzner M., Differential symmetry breaking operators: I. General theory and F-method, Selecta Math. (N.S.) 22 (2016), 801-845, arXiv:1301.2111.
-
Kobayashi T., Pevzner M., Differential symmetry breaking operators: II. Rankin-Cohen operators for symmetric pairs, Selecta Math. (N.S.) 22 (2016), 847-911, arXiv:1301.2111.
-
Kobayashi T., Speh B., Symmetry breaking for representations of rank one orthogonal groups, Mem. Amer. Math. Soc. 238 (2015), v+110 pages, arXiv:1310.3213.
-
Olver P.J., Classical invariant theory, London Mathematical Society Student Texts, Vol. 44, Cambridge University Press, Cambridge, 1999.
|
|