Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 13 (2017), 024, 13 pages      arXiv:1612.04623      https://doi.org/10.3842/SIGMA.2017.024
Contribution to the Special Issue on Modular Forms and String Theory in honor of Noriko Yui

Doran-Harder-Thompson Conjecture via SYZ Mirror Symmetry: Elliptic Curves

Atsushi Kanazawa
Department of Mathematics, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto, 606-8502, Japan

Received December 20, 2016, in final form April 06, 2017; Published online April 11, 2017

Abstract
We prove the Doran-Harder-Thompson conjecture in the case of elliptic curves by using ideas from SYZ mirror symmetry. The conjecture claims that when a Calabi-Yau manifold $X$ degenerates to a union of two quasi-Fano manifolds (Tyurin degeneration), a mirror Calabi-Yau manifold of $X$ can be constructed by gluing the two mirror Landau-Ginzburg models of the quasi-Fano manifolds. The two crucial ideas in our proof are to obtain a complex structure by gluing the underlying affine manifolds and to construct the theta functions from the Landau-Ginzburg superpotentials.

Key words: Calabi-Yau manifolds; Fano manifolds; SYZ mirror symmetry; Landau-Ginzburg models; Tyurin degeneration; affine geometry.

pdf (461 kb)   tex (103 kb)

References

  1. Aspinwall P.S., Bridgeland T., Craw A., Douglas M.R., Gross M., Kapustin A., Moore G.W., Segal G., Szendrői B., Wilson P.M.H., Dirichlet branes and mirror symmetry, Clay Mathematics Monographs, Vol. 4, Amer. Math. Soc., Providence, RI, Clay Mathematics Institute, Cambridge, MA, 2009.
  2. Auroux D., Mirror symmetry and $T$-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT 1 (2007), 51-91, arXiv:0706.3207.
  3. Auroux D., Special Lagrangian fibrations, mirror symmetry and Calabi-Yau double covers, Astérisque 321 (2008), 99-128, arXiv:0803.2734.
  4. Cho C.-H., Oh Y.-G., Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math. 10 (2006), 773-814, math.SG/0308225.
  5. Dolgachev I.V., Mirror symmetry for lattice polarized $K3$ surfaces, J. Math. Sci. 81 (1996), 2599-2630, alg-geom/9502005.
  6. Doran C.F., Harder A., Thompson A., Mirror symmetry, Tyurin degenerations, and fibrations on Calabi-Yau manifolds, to appear in Proceedings of String-Math 2015, arXiv:1601.08110.
  7. Fukaya K., Oh Y-.G., Ohta H., Ono K., Lagrangian intersection Floer theory: anomaly and obstruction, Part I, Part II, AMS/IP Studies in Advanced Mathematics, Vol. 46, Amer. Math. Soc., Providence, RI, International Press, Somerville, MA, 2009.
  8. Gross M., Siebert B., From real affine geometry to complex geometry, Ann. of Math. 174 (2011), 1301-1428, math.AG/0703822.
  9. Harder A., The geometry of Landau-Ginzburg models, Ph.D. Thesis, University of Alberta, 2016.
  10. Hitchin N.J., The moduli space of special Lagrangian submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), 503-515, dg-ga/9711002.
  11. Hori K., Vafa C., Mirror symmetry, hep-th/0002222.
  12. Kanazawa A., Doran-Harder-Thompson conjecture via integral affine geometry, in preparation.
  13. Kanazawa A., Lau S.-C., Calabi-Yau manifolds of $\widetilde{A}$ and open Yau-Zaslow formula via SYZ mirror symmetry, arXiv:1605.00342.
  14. Katzarkov L., Kontsevich M., Pantev T., Bogomolov-Tian-Todorov theorems for Landau-Ginzburg models, J. Differential Geom. 105 (2017), 55-117, arXiv:1409.5996.
  15. Kawamata Y., Namikawa Y., Logarithmic deformations of normal crossing varieties and smoothing of degenerate Calabi-Yau varieties, Invent. Math. 118 (1994), 395-409.
  16. Kontsevich M., Homological algebra of mirror symmetry, in Proceedings of the International Congress of Mathematicians, Vols. 1, 2 (Zürich, 1994), Birkhäuser, Basel, 1995, 120-139, alg-geom/9411018.
  17. Leung N.C., Mirror symmetry without corrections, Comm. Anal. Geom. 13 (2005), 287-331, math.DG/0009235.
  18. McLean R.C., Deformations of calibrated submanifolds, Comm. Anal. Geom. 6 (1998), 705-747.
  19. Seidel P., More about vanishing cycles and mutation, in Symplectic Geometry and Mirror Symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001, 429-465, math.SG/0010032.
  20. Strominger A., Yau S.-T., Zaslow E., Mirror symmetry is $T$-duality, Nuclear Phys. B 479 (1996), 243-259, hep-th/9606040.
  21. Tyurin A.N., Fano versus Calabi-Yau, in The Fano Conference, University Torino, Turin, 2004, 701-734, math.AG/0302101.

Previous article  Next article   Contents of Volume 13 (2017)