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Abstract. A class of nonlinear Schrödinger equations involving a triad of power law terms
together with a de Broglie–Bohm potential is shown to admit symmetry reduction to a hybrid
Ermakov–Painlevé II equation which is linked, in turn, to the integrable Painlevé XXXIV
equation. A nonlinear Schrödinger encapsulation of a Korteweg-type capillary system is
thereby used in the isolation of such a Ermakov–Painlevé II reduction valid for a multi-
parameter class of free energy functions. Iterated application of a Bäcklund transfor-
mation then allows the construction of novel classes of exact solutions of the nonlinear
capillarity system in terms of Yablonskii–Vorob’ev polynomials or classical Airy functions.
A Painlevé XXXIV equation is derived for the density in the capillarity system and seen to
correspond to the symmetry reduction of its Bernoulli integral of motion.

Key words: Ermakov–Painlevé II equation; Painlevé capillarity; Korteweg-type capillary
system; Bäcklund transformation
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1 Introduction

Giannini and Joseph [39], in a nonlinear optics context, introduced a class of symmetry reduc-
tions for a cubic nonlinear Schrödinger (NLS) equation

iΨt + Ψxx + ν|Ψ|2Ψ = 0, (1.1)

with subscripts denoted partial derivatives, which resulted in the Painlevé II equation but with
zero parameter α

d2q

dz2
= 2q3 + zq, (1.2)

see also [6, 49, 61]; the reduction of the NLS equation (1.1) to equation (1.2) was derived
in [37, 86]. Numerical integration led to the isolation of interesting non-stationary solutions
both bounded and stable in shape for a restricted range of ratio of nonlinearily to dispersion.
However, the absence of the Painlevé parameter α in that reduction does not allow the iterative
construction of sequences of exact solutions via the Bäcklund transformation for the canonical
Painlevé II (PII)

d2q

dz2
= 2q3 + zq + α, (1.3)
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with α a parameter, as given by Gambier [38] and Lukashevich [59]. Here, symmetry reduction to
PII (1.3) or to a hybrid Ermakov–Painlevé II equation linked to the integrable Painlevé XXXIV
(PXXXIV) equation

d2p

dz2
=

1

2p

(
dp

dz

)2

+ 2p2 − zp−
(α+ 1

2)2

2p
, (1.4)

with α a parameter, is obtained for a wide class of NLS equations which incorporates a triad
of power law terms together with a de Broglie–Bohm potential term. It is remarked that NLS
equations involving such triple power law nonlinearities arise in nonlinear optics (see [31, 91]
and literature cited therein). Moreover, NLS equations containing a de Broglie–Bohm term
also arise in the analysis of the propagation of optical beams [75, 90] as well as in cold plasma
physics [56]. Under appropriate conditions, such ‘resonant’ NLS equations admit novel fusion
or fission solitonic behaviour [55, 56, 67, 68].

The Ermakov–Painlevé II symmetry reduction is applied here to an NLS encapsulation of
a nonlinear capillarity system with origin in classical work of Korteweg [54]. Iterated application
of a Bäcklund transformation admitted by PII (1.3) permits the construction via the linked
PXXXIV equation of novel multi-parameter wave packet solutions to the capillarity system in
terms of either Yablonskii–Vorob’ev polynomials or classical Airy functions. These are shown
to be valid for a multi-parameter class of model specific free energy relations. An invariance of
the (1 + 1)-dimensional Korteweg capillarity system under a one-parameter class of reciprocal
transformations as recently set down in [80] allows the extension of the reduction procedure to
a yet wider class of capillarity systems.

2 A Ermakov–Painlevé II symmetry reduction

Here, a class of (1 + 1)-dimensional nonlinear Schrödinger equations of the type

iΨt + Ψxx −
[
(1− C) |Ψ|xx

|Ψ|
− ic |Ψ|x
|Ψ|2

+ λ|Ψ|2 + µ|Ψ|2m + ν|Ψ|2n
]

Ψ = 0, (2.1)

which incorporates a de Broglie–Bohm potential |Ψ|xx/|Ψ| and a triad of power law terms is
investigated under a symmetry reduction. Thus, constraints on the parameters in (2.1) are
sought for which the class of NLS equations admits symmetry reduction either to the PII (1.3),
with non-zero parameter α, or to a hybrid Ermakov–Painlevé II equation under a wave packet
ansatz

Ψ = [φ(ξ) + iψ(ξ)] exp(iη), (2.2a)

with

ξ = αt+ βt2 + γx, η = γt3 + δt2 + εγtx+ ζt+ λx. (2.2b)

In the nonlinear optics context of [39] such a similarity transformation was used to reduce
a standard cubic NLS equation to Painlevé II but with zero parameter α and resort was made
to a numerical treatment. Asymptotic properties of PII (1.2) with α = 0 have been discussed
by various authors, see, e.g., [2, 8, 23, 28, 34, 41, 62].

In the present case, on introduction of the wave packet ansatz (2.2) into (2.1), it is seen that

γ2
d2φ

dξ2
− dψ

dξ

[
2
(
β + εγ2

)
t+ α+ 2λγ

]
+
cγψ

|Ψ|3

(
φ
dφ

dξ
+ ψ

dψ

dξ

)
−∆φ = 0, (2.3a)

γ2
d2ψ

dξ2
+
dφ

dξ

[
2
(
β + εγ2

)
t+ α+ 2λγ

]
− cγφ

|Ψ|3

(
φ
dφ

dξ
+ ψ

dψ

dξ

)
−∆ψ = 0, (2.3b)
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where

∆ = 3γt2 + 2δt+ εγx+ ζ + (εγt+ λ)2 + λ|Ψ|2 + µ|Ψ|2m + ν|Ψ|2n

+
sγ2

|Ψ|4

{[
φ
d2φ

dξ2
+ ψ

d2ψ

dξ2
+

(
dφ

dξ

)2

+

(
dψ

dξ

)2
] (
φ2 + ψ2

)
−
(
φ
dφ

dξ
+ ψ

dψ

dξ

)2
}
, (2.4)

with s = 1− C. The relations (2.3) together show that

γ2
(
d2φ

dξ2
ψ − d2ψ

dξ2
φ

)
−
(
φ
dφ

dξ
+ ψ

dψ

dξ

)[
2
(
β + εγ2

)
t+ α+ 2λγ

]
+
cγ

|Ψ|

(
φ
dφ

dξ
+ ψ

dψ

dξ

)
= 0, (2.5)

whence it is required that

β + εγ2 = 0,

in which case equation (2.5) admits the integral

γ2
(
dφ

dξ
ψ − dψ

dξ
φ

)
− 1

2(α+ 2λγ)|Ψ|2 + cγ|Ψ| = I, (2.6)

where I is an arbitrary constant of motion.
On use of the relation[

φ
d2φ

dξ2
+ ψ

d2ψ

dξ2
+

(
dφ

dξ

)2

+

(
dψ

dξ

)2
]

(φ2 + ψ2)−
(
φ
dφ

dξ
+ ψ

dψ

dξ

)2

= |Ψ|3d
2|Ψ|
dξ2

, (2.7)

it is seen that (2.4) yields, if β 6= 0,

∆ = γβ−1
(
ε2γ + 3

)
(ξ − αt− γx) + 2(δ + εγλ)t+ εγx+ ζ + λ2

+ λ|Ψ|2 + µ|Ψ|2m + ν|Ψ|2n +
sγ2

|Ψ|
d2|Ψ|
dξ2

= εξ + ζ + λ2 + λ|Ψ|2 + µ|Ψ|2m + ν|Ψ|2n +
sγ2

|Ψ|
d2|Ψ|
dξ2

, (2.8)

on setting

βε = γ
(
3 + ε2γ

)
, αε = 2(δ + εγλ). (2.9)

Moreover, equations (2.3) again combine to show that

γ2
(
φ
d2φ

dξ2
+ ψ

d2ψ

dξ2

)
+

(
dφ

dξ
ψ − dψ

dξ
φ

)
(α+ 2λγ)−∆|Ψ|2 = 0,

whence, on use of the identity

(φ2 + ψ2)

[(
dφ

dξ

)2

+

(
dψ

dξ

)2
]
−
(
dφ

dξ
ψ − dψ

dξ
φ

)2

≡
(
φ
dφ

dξ
+ ψ

dψ

dξ

)2

,

together with (2.7), it is seen that

γ2

[
|Ψ|3d

2|Ψ|
dξ2

−
(
dφ

dξ
ψ − dψ

dξ
φ

)2
]

+ (α+ 2λγ)

(
dφ

dξ
ψ − dψ

dξ
φ

)
|Ψ|2 −∆|Ψ|4 = 0.
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The latter, by virtue of the integral of motion (2.6) and the expression (2.8) for ∆ now produces
a nonlinear equation in the amplitude |Ψ|, namely

d2|Ψ|
dξ2

+ [c1 + c2ξ]|Ψ|+ c3|Ψ|3 + c4|Ψ|2m+1 + c5|Ψ|2n+1 +
c6
|Ψ|

+
c7
|Ψ|2

=
I2

(1− s)γ4|Ψ|3
, (2.10)

where the constants c1, c2, . . . , c7 are given by

c1 =
(α− δ/ε)2 − γ2(ζ + λ2)

(1− s)γ4
, c2 =

ε

(s− 1)γ2
, c3 =

λ

(s− 1)γ2
, (2.11a)

c4 =
µ

(s− 1)γ2
, c5 =

ν

(s− 1)γ2
, c6 =

c2

(s− 1)γ2
, c7 =

2cI
(1− s)γ3

, (2.11b)

and it is required that s 6= 1.

Below a triad of cases is set down in which the amplitude equation (2.10) reduces either
directly to PII or to a hybrid Ermakov–Painlevé II equation subsequently shown to be integrable.

Case (i) I = 0; m = −1
2
; n = −1.

In this case with

c1 = 0, c2 = −1, c3 = −2, c4 = −α, c5 + c6 = 0,

the amplitude equation reduces directly to the Painlevé II equation

d2|Ψ|
dξ2

= 2|Ψ|3 + ξ|Ψ|+ α, (2.12)

corresponding to the symmetry reduction via the ansatz (2.2) of the class of NLS equations

iΨt + Ψxx −
[
(1− C) |Ψ|xx

|Ψ|
− ic |Ψ|x
|Ψ|2

+ Cγ2|Ψ|2 +
Cγ2α
|Ψ|

− c2

|Ψ|2

]
Ψ = 0.

Case (ii) I = 0; c = 0; m = −1
2
; n = 0.

Here, with

c1 = −c5, c2 = −1, c3 = −2, c4 = −α,

the PII equation (2.12) again results, while the associated class of NLS equations (2.1) becomes

iΨt + Ψxx −
[
(1− C) |Ψ|xx

|Ψ|
+ Cγ2|Ψ|2 +

Cγ2α
|Ψ|

+ ν

]
Ψ = 0. (2.13)

It is remarked that in the absence of the de Broglie–Bohm term, a time-independent NLS
equation of this type (2.13) incorporating a nonlinearity ∼ |Ψ|−1 has been derived ‘ab initio’
in [84] via a geometric model which describes stationary states of supercoiled DNA.
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Case (iii) I 6= 0; c = 0; m = −1
2
; n = 0.

In this case, equation (2.10) reduces to a hybrid ‘Ermakov–Painlevé II’ equation of the type

d2|Ψ|
dξ2

+ ε|Ψ|3 + (δξ + ζ)|Ψ| = σ

|Ψ|3
, (2.14)

and which will be subsequently seen to be linked to PXXXIV (1.4). It is recalled that the classical
Ermakov equation with roots in [30], namely

d2E
dξ2

+ ω(ξ)E =
σ

E3
,

admits a nonlinear superposition principle readily derived via a Lie group approach as in [76, 81].
In the subsequent application to the Korteweg capillarity system it will be the Ermakov–

Painlevé II symmetry reduction that will be exploited. With a positive solution |Ψ| of (2.14) to
hand, the corresponding class of exact solutions for Ψ in the wave packet representation (2.2) is
obtained via the integral of motion (2.6). Thus, the latter yields

γ2
d

dξ

[
tan−1

(
φ

ψ

)]
− α+

δ

ε
+
cγ

|Ψ|
=
I
|Ψ|2

,

whence, on integration

γ2 tan−1
(
φ

ψ

)
=

(
α− δ

ε

)
ξ − cγ

∫
1

|Ψ|
dξ + I

∫
1

|Ψ|2
dξ, (2.15)

where use has been made of the relation (2.9). Accordingly, with V = φ/ψ, it is seen that φ, ψ
in the original wave packet representation are given by the relations

φ = ± |Ψ|V√
1 + V 2

, ψ = ± |Ψ|√
1 + V 2

.

In the sequel, the link between the Ermakov–Painlevé II equation (2.14) and PXXXIV (1.4)
is used to construct novel classes of wave packet solutions of a nonlinear Korteweg capillarity
system in terms of Yablonskii–Vorob’ev polynomials or classical Airy functions via the iterated
application of the Bäcklund transformation for PII due to Gambier [38] and Lukashevich [59].

3 The capillarity system

In [4], Antanovskii derived the isothermal capillarity system with continuity equation

ρt + div(ρv) = 0, (3.1a)

augmented by the momentum equation

vt + v •∇v +∇
[
δ(ρE)

δρ
−Π

]
= 0, (3.1b)

where ρ is the density, v velocity and E(ρ, |∇ρ|2/ρ) is the specific free energy. Herein, the
standard variational derivative notation

δΘ

δρ
=
∂Θ

∂ρ
−∇ •

[
∂Θ

∂A
∇ρ
]
,
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is adopted with A = 1
2 |∇ρ|

2. In the above Π is an external potential, commonly taken to be
that due to gravity, in which case Π = −ρg. The classical Korteweg capillarity system as set
down in [54] is retrieved in the specialisation

E(A, ρ) =
κ(ρ)A
ρ

, κ(ρ) > 0,

in which case, the momentum equation becomes

vt + v •∇v −∇
[
κ(ρ)∇2ρ+ 1

2 |∇ρ|
2dκ(ρ)

dρ
+ Π

]
= 0.

The classical Boussinesq capillarity system, in turn, is retrieved as the specialisation with κ
constant in this Korteweg system. A system analogous to the Boussinesq model arises ‘mutatis
mutandis’ in plasma physics [9].

In the case of irrotationality with v = ∇Φ, the momentum equation (3.1b) admits the
Bernoulli integral

Φt + 1
2 |∇Φ|2 +

δ

δρ
(ρE)−Π = B(t),

and on introduction of the Madelung transformation [60]

Ψ = ρ1/2 exp
(
1
2 iΦ
)
, (3.2)

the capillarity system (3.1) may be encapsulated in the generalised NLS-type equation

iΨt +∇2Ψ +

[
−∇

2|Ψ|
|Ψ|

− 1
2

δ(ρE)

δρ
+ 1

2Π

]
Ψ = 0, (3.3)

incorporating a de Broglie–Bohm potential term.

It was observed by Antanovskii et al. in [5] that if Π = 0 and

E
(
1
2 |∇ρ|

2, ρ
)

= C |∇ρ|
2

2ρ2
+ νρ+

τ

ρ
, (3.4)

then (3.3) reduces, if C = 1, to the cubic nonlinear Schrödinger equation

iΨt +∇2Ψ− ν|Ψ|2Ψ = 0.

If, on the other hand, C 6= 1, it is seen that reduction is obtained to a ‘resonant’ NLS-type
equation [78]

iΨt +∇2Ψ +

[
(C − 1)

∇2|Ψ|
|Ψ|

− ν|Ψ|2
]

Ψ = 0. (3.5)

Moreover, if C > 0 as in the present capillarity context, (3.5) may be transformed to a standard
cubic NLS equation with the de Broglie–Bohm term removed (see, e.g., [73]). Thus, in 1 + 1
dimensions with three-parameter model energy E(12 |∇ρ|

2, ρ) of the type (3.4) reduction is made
to a canonical integrable NLS equation. The capillarity system encapsulated in the (1 + 1)-
dimensional version of (3.5) then becomes amenable to established methods of soliton theory
such as inverse scattering procedures and inherits admittance of invariance under a Bäcklund
transformation together with concomitant nonlinear superposition principle (see, e.g., [1, 77, 79]
and literature cited therein). It is noted that a gravitational potential term Π = −ρg is readily
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accommodated in the above reduction. Detailed qualitative properties of capillarity systems
with model laws of the type (3.4) with Kármán–Tsien-type law

κ(ρ) = C/ρ, C > 0, (3.6)

have been recently set down in [16] while travelling wave propagation in (1 + 1)-dimensional
capillarity theory has been investigated in [10].

Here, a more general class of model energy E(12 |∇ρ|
2, ρ) laws is considered, namely that with

E =
κ(ρ)|∇ρ|2

2ρ
+
R(ρ)

ρ
,

so that, with Π = 0, (3.3) produces the class of NLS equations

iΨt +∇2Ψ−
[(

1 +
dκ

dρ
|Ψ|4

)
∇2|Ψ|
|Ψ|

− 1
2

(
κ(ρ) +

dκ

dρ
|Ψ|2

)
(∇|Ψ|)2 + 1

2

dR
dρ

]
Ψ = 0. (3.7)

Thus, capillarity systems encapsulated in (3.7) are isolated which may be aligned with NLS
equations of the type (2.1) in the case c = 0, m = −2, n = 0. This occurs for the multi-
parameter class of model energy laws with

E
(
1
2 |∇ρ|

2, ρ
)

= C |∇ρ|
2

2ρ2
+ λρ− 2µ

ρ2
+ 2ν +

τ

ρ
, (3.8)

where λ, µ, ν and τ together with C > 0 are real constants. Importantly, this includes in the
case µ = 0 the class which has been recently subject to a detailed qualitative analysis in [16].
The κ(ρ) capillarity relation is seen to be of the Kármán–Tsien type (3.6). Here,

λ = −Cγ2c3, µ = −Cγ2c4, ν = −Cγ2c5, (3.9)

in accordance with the relations (2.11). The associated class of NLS equations

iΨt + Ψxx −
[
(C − 1)

|Ψ|xx
|Ψ|

+ λ|Ψ|2 +
µ

|Ψ|4
+ ν

]
Ψ = 0,

hence, admits symmetry reduction via the wave packet ansatz (2.2) to the hybrid Ermakov–
Painlevé II equation (cf. (2.10))

d2|Ψ|
dξ2

+ [c1 + c5 + c2ξ] |Ψ|+ c3|Ψ|3 =
σ

|Ψ|3
, (3.10)

where

σ =
1

Cγ2

[(
I
γ

)2

+ µ

]
. (3.11)

Interestingly, this symmetry reduction to an integrable Ermakov–Painlevé II equation will be
admitted by Korteweg-type capillarity systems with the particular model energy laws of the
type discussed in [16].

Under the translation ζ = ξ + (c1 + c5)/c2, with c2 6= 0, (3.10) becomes

d2|Ψ|
dζ2

+ c2ζ|Ψ|+ c3|Ψ|3 =
σ

|Ψ|3
, (3.12)
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where the Madelung relation (3.2) shows that, in the present capillarity context |Ψ| = ρ1/2.
Thus, ρ1/2 is governed by a hybrid Ermakov–Painlevé II equation while in terms of the density ρ
it is seen that (3.12) produces

d2ρ

dζ2
=

1

2ρ

(
dρ

dζ

)2

− 2c3ρ
2 − 2c2ζρ+

2σ

ρ
, (3.13)

which is equivalent to PXXXIV (1.4) (through a rescaling of the variables). This link between the
Ermakov–Painlevé II equation (3.12) and PXXXIV (1.4) has been noted previously in the context
of a Painlevé reduction of a classical Nernst–Planck electrodiffusion system in [3]. We remark
that the special case of equation (3.13) with c3 = 0 was considered by Gambier [38, pp. 27–28],
who linearised the equation. Multiplying (3.13) with c3 = 0 by ρ and differentiating gives

d3ρ

dζ3
= 4ζ

dρ

dζ
+ 2ρ,

which has solution

ρ(ζ) = C1 Ai2(z) + C2 Ai(z) Bi(z) + C3 Bi2(z), z = −c1/32 ζ, (3.14)

with C1, C2 and C3 constants. The solution ρ(ζ) given by (3.14) satisfies (3.13) only if c3 = 0,
σ = 0 and 4C1C2 = C2

3 .

In the sequel, it is convenient to proceed with

c2 = −1
2 , c3 = −1, σ = −1

4

(
α+ 1

2

)2
,

whence

ε = 1
2Cγ

2 > 0, λ = Cγ2 > 0,
(
α+ 1

2

)2
= − 4

λ

[(
I
γ

)2

+ µ

]
, (3.15)

where the latter requires that µ < −CI2/λ < 0. The Ermakov–Painlevé II equation (3.12) is
then linked to PXXXIV (1.4) via the relation ρ = |Ψ|2 > 0.

The well-known connection, in turn, between PII (1.3) and PXXXIV (1.4) is readily derived
via the Hamiltonian system

dq

dz
=
∂HII

∂p
,

dp

dz
= −∂HII

∂q
,

where the Hamiltonian HII(p, q, z;α) is given by

HII(p, q, z;α) = 1
2p

2 −
(
q2 + 1

2z
)
p−

(
α+ 1

2

)
q,

leading to the coupled pair of nonlinear equations

dq

dz
= p− q2 − 1

2z,
dp

dz
= 2qp+ α+ 1

2 , (3.16)

(see [44, 66]). Elimination of p and q successively in (3.16) duly leads to the PII (1.3) and
PXXXIV (1.4). Thus, in the present capillarity context, the density distribution ρ(ζ) is given by

ρ(ζ) =
dw

dζ
+ w2 + 1

2ζ,
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where w(ζ) is governed by the PII equation

d2w

dζ2
= 2w3 + ζw + α.

Here, the concern is necessarily restricted to solutions of PXXXIV (1.4) in regions in which ρ is
positive. Interestingly, the importance of positive solutions of PXXXIV (1.4) also arises naturally
in the setting of two-ion electro-diffusion. Thus, in the electrolytic context of [7, 13], the scaled
electric field Y was shown to be governed by the PII equation

d2Y

dz2
= 2Y 3 + zY + α,

and associated ion concentrations by

p± = ±dY
dz

+ Y 2 + 1
2z,

with parameter

α =
1−A−/A+

2(1 +A−/A+)
,

and A± = −Φ±/D±, Φ± being the fluxes of the ion concentrations and D± diffusivity constants
arising in the Einstein relation. Thus, it is seen that the ion concentrations, which are necessarily
positive, are governed by PXXXIV (1.4). This positivity constraint was examined in detail in [7]
for exact solutions in terms of either Yablonskii-Vorob’ev polynomials or classical Airy functions
as induced by the iterated action of the Bäcklund transformation of [59] for PII (1.3). The results
apply ‘mutatis mutandis’ in the present capillarity context.

4 Iterated action of a Bäcklund transformation

Here, the consequences of the following well-known Bäcklund transformation for PII (1.3) are
applied in the present capillarity context.

Theorem 4.1. If qα(z) = q(z;α) is a solution of PII (1.3) with parameter α, then

qα+1(z) = −qα(z)− 2α+ 1

2q′α(z) + 2q2α(z) + z
, (4.1a)

qα−1(z) = −qα(z)− 2α− 1

2q′α(z)− 2q2α(z) + z
, (4.1b)

are solution of PII with respective parameters α+ 1 and α− 1.

Proof. See Gambier [38] and Lukashevich [59]. �

The iteration of the Bäcklund transformations (4.1) allows the generation of all known exact
solutions of PII (1.3).

We note that eliminating q′α(z) in (4.1) yields the nonlinear difference equation

α+ 1
2

qα+1 + qα
+

α− 1
2

qα + qα−1
+ 2q2α + z = 0,

which is known as an alternative form of discrete Painlevé I [33].
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Theorem 4.2. If qα = q(z;α) and pα = p(z;α) are solutions of PII (1.3) and PXXXIV (1.4)
with parameter α respectively, then

qα+1 = −qα −
2α+ 1

2pα
,

qα−1 = −qα +
2α− 1

2pα − 4q2α + 2z
,

pα+1 = −pα +

(
qα +

2α+ 1

2pα

)2

+ z,

pα−1 = −pα + 2q2α + z.

Proof. See Okamoto [66]; also [35]. �

4.1 Rational solutions

The iterative action of the above Bäcklund transformation on the seed solution q = 0 of PII with
α = 0 produces the subsequent sequence of rational solutions

qn(z) =
d

dz
ln
Qn−1(z)

Qn(z)
, n ∈ N, (4.2)

corresponding to the Painlevé parameters α = n, for n ∈ N, where the Qn(z) are the Yablonskii–
Vorob’ev polynomials determined by the quadratic recurrence relations

Qn+1Qn−1 = zQ2
n + 4

{(
dQn
dz

)2

−Qn
d2Qn

dz2

}
, (4.3)

with Q−1(z) = Q0(z) = 1 [89, 92]; see also [18, 19, 22, 48, 50, 87]. The Qn(z) are monic
polynomials of degree 1

2n(n+1) with each term possessing the same degree modulo 3. Moreover,
on use of the invariance under

q(z, α)→ −q(z;−α),

it is seen that PII (1.3) also admits the associated class of rational solutions

q−n(z) =
d

dz
ln

Qn(z)

Qn−1(z)
, n ∈ N, (4.4)

corresponding to the Painlevé parameters α = −n, for n ∈ N. The rational solutions of PXXXIV

(1.4) are given by

pn(z) = 1
2z − 2

d2

dz2
lnQn(z) ≡ Qn+1(z)Qn−1(z)

2Q2
n(z)

, n ∈ N,

corresponding to the parameters α = n, with n ∈ N.
It is clear from the recurrence relation (4.3) that the Qn(z) are rational functions, though

it is not obvious that they are polynomials since one is dividing by Qn−1(z) at every iteration.
In fact it is somewhat remarkable that the Qn(z) are polynomials. Taneda [87], used an alge-
braic method to prove that the functions Qn(z) defined by (4.3) are indeed polynomials, see
also [36]. The Yablonskii–Vorob’ev polynomials Qn(z) can also be expressed as determinants,
see [22, 46, 47]. Clarkson and Mansfield [22] investigated the locations of the roots of the
Yablonskii–Vorob’ev polynomials in the complex plane and showed that these roots have a very
regular, approximately triangular structure; the term “approximate” is used since the patterns



Ermakov–Painlevé II Symmetry Reduction of a Korteweg Capillarity System 11

are not exact triangles as the roots lie on arcs rather than straight lines. Recently Bertola and
Bothner [11] and Buckingham and Miller [14, 15] have studied the Yablonskii–Vorob’ev polyno-
mials Qn(z) in the limit as n → ∞ and shown that the roots lie in a “triangular region” with
elliptic sides which meet with interior angle 2

5π, suggesting a limit to a solution of Painlevé I (PI).
Indeed Buckingham and Miller [15] show that in the limit as n→∞, the rational solution qn(z)
of PII tends to the tritronquée solution of PI due to Boutroux [12], which no poles (of large
modulus) except in one sector of angle 2

5π (see also [45]).
In the sequel, attention is restricted to the case with invariants I = In 6= 0 so that similarity

reduction of the capillarity system via (2.2) leads to consideration of a Ermakov–Painlevé II
equation in the amplitude |Ψ| and, in turn, density ρ as determined by PXXXIV (3.13). Thus,
the density distribution ρ = ρ+ associated with the class of exact solutions (4.2) of PII (1.3)
in terms of Yablonskii–Vorob’ev polynomials with z = ζ may be shown to be given by rational
expressions derived via (3.12) to adopt the form (see [18, 19, 22])

ρ+(ζ;n) =
Qn+1(ζ)Qn−1(ζ)

2Q2
n(ζ)

, ρ+(ζ; 0) = 1
2ζ, (4.5)

as subsequently employed in the two-ion electolytic boundary value problems investigated in [7].
Therein, the positivity of members of the class of rational solutions (4.5) of PXXXIV on appropri-
ate regions has been delimited. In the present capillarity context, in such regions where ρ = ρ+
is positive, the class of solutions (4.5) is associated with wave packet representations (2.2) with

φ(ξ) = ± V (ξ)√
1 + V 2(ξ)

√
Qn+1(ξ)Qn−1(ξ)

2Q2
n(ξ)

, (4.6a)

ψ(ξ) = ± 1√
1 + V 2(ξ)

√
Qn+1(ξ)Qn−1(ξ)

2Q2
n(ξ)

, (4.6b)

where V (ξ) is given by, in view of (2.15),

γ2 tan−1 V (ξ) =

(
α− δ

ε

)
ξ + 2In

∫ ξ Q2
n(s)

Qn+1(s)Qn−1(s)
ds

=

(
α− δ

ε

)
ξ +

2In
2n+ 1

ln
Qn+1(ξ)

Qn−1(ξ)
, (4.7)

since ∫ ξ Q2
n(s)

Qn+1(s)Qn−1(s)
ds =

1

2n+ 1
ln
Qn+1(ξ)

Qn−1(ξ)
. (4.8)

This result (4.8) follows since the Yablonskii–Vorob’ev polynomials Qn(ξ) satisfy the bilinear
relation

dQn+1

dξ
Qn−1 −

dQn−1
dξ

Qn+1 = (2n+ 1)Q2
n,

which is proved in [36, 87] (see also [50]). Likewise, there are associated classes of wave packet
representations corresponding to the rational solution q−n(z) given by (4.4) which are determined
by the relations (4.6), (4.7) but with the transposition n↔ n− 1.

4.2 Airy-type solutions

The iterated action of the Bäcklund transformations (4.1) may, in addition, be used to ge-
nerate exact solutions of PII (1.3) with parameters α = ±1

2 ,±
3
2 , . . . in terms of classical Airy
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functions [21]. Thus, in particular, if α = 1
2 then PII (1.3) admits the exact solution

q
(
z; 1

2

)
= − d

dz
lnϕ(z), (4.9)

where ϕ(z) is governed by the classical Airy function

d2ϕ

dz2
+ 1

2zϕ = 0. (4.10)

Iteration of the Bäcklund transformation (4.1a) with the Airy-type seed solution (4.9) generates
as infinite sequence of exact solutions

q
(
z;n− 1

2

)
=

d

dz
ln
un−1(z)

un(z)
, n ∈ N, (4.11)

where the sequence {u`(z)}, for ` ≥ 0, is determined by the recurrence relation (Toda equation)

un+1un−1 = 4

{(
dun
dz

)2

− un
d2un

dz2

}
, (4.12a)

with initial values

u0(z) = 1, u1(z) = ϕ(z). (4.12b)

The un(z), for n ≥ 2, are homogeneous polynomials of degree n in ϕ(z) and ϕ′(z), i.e., have the
form

un(z) =

n∑
j=0

an,jϕ
j

(
dϕ

dz

)n−j
,

where an,j(z) are polynomials in z and ϕ(z) is the solution of (4.10) given by

ϕ(z) = cos(ϑ) Ai
(
−2−1/3z

)
+ sin(ϑ) Bi

(
−2−1/3z

)
, (4.13)

with Ai(x) and Bi(x) the Airy functions and ϑ an arbitrary constant.
The analogous Airy-type solutions of PXXXIV (1.4) are given by

p
(
z;n− 1

2

)
= −2

d2

dz2
lnun ≡

un−1un+1

2u2n
, n ∈ N,

for the parameter α = n− 1
2 .

The Airy-type solutions of PII (1.3) and PXXXIV (1.4) can also be expressed in terms of
determinants, as described in the following theorem.

Theorem 4.3. Let τn(z) be the Hankel n× n determinant

τn(z) =

[
dj+k

dzj+k
ϕ(z)

]n−1
j,k=0

, n ≥ 1,

with ϕ(z) given by (4.13) and τ0(z) = 1, then for n ≥ 1,

q
(
z;n− 1

2

)
=

d

dz
ln
τn−1(z)

τn(z)
, p

(
z;n− 1

2

)
= −2

d2

dz2
ln τn(z), (4.14)

respectively satisfy PII (1.3) and PXXXIV (1.4) with α = n− 1
2 .
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Proof. See Flaschka and Newell [32], Okamoto [66]; also [21, 35]. �

We remark that recently it was shown that Airy-type solutions of PII (1.3) and PXXXIV (1.4)
which depend only on the Airy function Ai(x) have a completely different structure to those
which involve a linear combination of the Airy functions Ai(x) and Bi(x), see [21]. In particular,
for n ∈ 2N the solution (4.14) of PXXXIV (1.4) has no poles on the real axis when ϕ(z) =
Ai(−2−1/3z) and decays algebraically as z → ±∞. This special solution arose in a study of
the double scaling limit of unitary random matrix ensembles by Its, Kuijlaars, and Östensson
[42, 43], who identify the solution as a tronquée solution of PXXXIV, i.e., has no poles in a sector
of the complex plane (see also [21]).

The iterative application of the Bäcklund transformations (4.1) to generate Airy-type solu-
tions of PII (1.3) has been used to solve boundary value problems associated with the classical
Nernst–Planck system for two-ion electro-diffusion [7, 74]. The repeated action of the Bäcklund
transformations in this electrolytic setting has been recently associated with quantised fluxes
of ionic species in [13]. It is remarked that the Painlevé structure underlying a multi-ion elec-
trodiffusion model has been systematically investigated in [26].

In the present capillarity context, the density distributions associated with the class of exact
solutions of PII (1.3) determined by the relations (4.11), (4.12) are given by [7]

ρ
(
ξ;n− 1

2

)
=
un−1(ξ)un+1(ξ)

2u2n(ξ)
, ρ

(
ξ;−1

2

)
= 0,

where un(z) is given by (4.12). The physical requirement of positivity of these solutions corre-
sponding to the specialisation ϕ(z) = Ai(−2−1/3z) in (4.13), i.e., when ϑ = 0, has been examined
in detail in the electrolytic context of [7]. The implications of the results carry over to the present
capillarity study.

In general, with regard to the velocity magnitude v = |v|, alignment of the Madelung trans-
formation (3.2) with (2.2) produces the velocity potential relation

Φ = 2 tan−1
(
ψ + φ tan η

φ− ψ tan η

)
= 2

[
tan−1

(
ψ

φ

)
+ η

]
, (4.15)

on use of the identity

tan−1
(
x+ y

1− xy

)
≡ tan−1 x+ tan−1 y.

Integration of the invariant relation (2.6) where in the present context c = 0, yields

−γ2 tan−1
(
ψ

φ

)
=

(
α− δ

ε

)
ξ + 2I

∫ ξ u2n(s)

un+1(s)un−1(s)
ds =

(
α− δ

ε

)
ξ +
I
n

ln
un+1(ξ)

un−1(ξ)
,

since ∫ ξ u2n(s)

un+1(s)un−1(s)
ds =

1

2n
ln
un+1(ξ)

un−1(ξ)
. (4.16)

The result (4.16) holds as the un(ξ) satisfy the bilinear relation

dun+1

dξ
un−1 −

dun−1
dξ

un+1 = 2nu2n,

which follows from Theorem 4.2. Consequently (4.15) yields

|v| = − 2

γ2

[
γ
∂

∂ξ
+ (εγt+ λ)

∂

∂η

] [(
α− δ

ε

)
ξ + I

∫
1

|Ψ|2
dξ + η

]
,
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whence,

v = − 2I
γρ(ξ)

+ 2εγt− α

γ
,

on use of the relation (2.9). Insertion of the latter expression into the momentum equation of
the capillarity system, namely

vt + vvx +

[
δ

δρ
(ρE)

]
x

= 0,

on integration, produces the Bernoulli integral

2I2

γ2ρ2
+ 2εγx+

δ

δρ
(ρE) = B(t).

Here (3.8) shows that

ρE = C γ
2

2ρ
ρ2x + λρ2 +

2µ

ρ
+ 2νρ+ τ,

whence,

δ

δρ
(ρE) =

∂

∂ρ
(ρE)− C ∂

∂x

(
ρx
ρ

)
= 2λρ+

2µ

ρ2
+ 2ν + C

(
ρ2x
2ρ2
− ρxx

ρ

)
,

in which ρ(x, t) = R(ξ) with ξ = αt+ βt2 + γx so that ρx = γR′(ξ). Thus,

2I2

γ2R2
+ 2εγx+ 2λR+

2µ

R2
+ 2ν + Cγ2

[
1

2R2

(
dR

dξ

)2

− 1

R

d2R

dξ2

]
= B(t),

and with B(t) = −2ε(αt + βt2), an equation equivalent to PXXXIV (1.4) for the density ρ(ζ) is
retrieved, namely

d2ρ

dζ2
=

1

2ρ

(
dρ

dζ

)2

+
2λρ2

Cγ2
+

2εζρ

Cγ2
+

2(I2 + γ2µ)

Cγ4ρ
, ζ = ξ +

c1 + c5
c2

,

which aligns with (3.13) in view of the relations (3.9), (3.11) and (3.15). Thus, it is seen that,
remarkably, in the present context PXXXIV is associated with the density ρ corresponding to
a symmetry reduction of the Bernoulli integral of motion of the capillarity system.

5 Invariance under a reciprocal transformation

The application of reciprocal-type transformations to (1 + 1)-dimensional nonlinear physical
systems has its origin in the isolation of novel invariance properties in gasdynamics and magne-
togasdynamics [70, 71]. They have been subsequently applied to both obtain analytic solution
to moving boundary problems of Stefan-type [72] and to link integrable systems of modern
soliton theory (see, e.g., [27, 65] together with [79] and work cited therein). In 3 + 1 dimen-
sions, reciprocal-type transformations have been shown to have application in discontinuity wave
propagation theory [29].

In the present capillarity context, the (1 + 1)-dimensional version of the system (3.1) with
Π = 0, namely

ρt + (ρv)x = 0, vt + vvx +

[
δ

δρ
(ρE)

]
x

= 0,
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was recently shown in [80] to be invariant under the one-parameter (χ) class of reciprocal-type
transformations

ρ∗ =
ρ

1 + χρ
, q∗ = q, E∗(A∗, ρ∗) = E(A, ρ), A∗ =

A
(1 + χρ)6

,

dx∗ = (1 + χρ) dx− χρq dt, dt∗ = dt, 0 < |1 + χρ| <∞,

where A = 1
2ρ

2
x. A direct corollary of this result is that the (1 + 1)-dimensional Korteweg-type

capillarity system

ρt + (ρv)x = 0, (5.1a)

vt + vvx +

(
−κ(ρ)ρxx − 1

2

dκ

dρ
ρ2x +

dR
dρ

)
x

= 0, (5.1b)

is invariant under the one-parameter class of reciprocal transformations

dx∗ = (1 + χρ) dx− χρq dt, dt∗ = dt, ρ∗ =
ρ

1 + χρ
, q∗ = q,

augmented by the relations

κ∗ = (1 + χρ)5κ, R∗ =
R

1 + χρ
.

This invariant transformation may be applied to seed solutions of the capillarity system (5.1) as
previously determined in terms of Yablonskii–Vorob’ev polynomials or classical Airy functions
to construct extended χ-dependent classes of exact solutions valid for model energy laws E∗ with
χ-deformed Kármán–Tsien capillarity relation

κ∗ =
C

ρ∗(1− χρ∗)4
,

together with

R∗ =
λρ∗2

1− χρ∗
− 2µ

(1− χρ∗)2

ρ∗
+ 2νρ∗ + τ(1− χρ∗).

The original κ(ρ), R(ρ) associated with the PXXXIV reduction are retrieved in the limit χ→ 0.

6 General perspectives on model laws in continuum mechanics
and solitonic connections: conclusion

Here, model energy laws have been isolated for which a Korteweg-type capillarity system ad-
mits symmetry reduction to a integrable hybrid Ermakov–Painlevé equation. A Bäcklund and
reciprocal transformation have been used in turn to generate novel classes of exact solutions
and to extend the range of the reduction. The derivation of multi-parameter model constitu-
tive laws for which systems in nonlinear continuum mechanics become analytically tractable via
the application of Bäcklund or reciprocal transformations has an extensive literature. Thus,
in gasdynamics, Loewner [57, 58] applied matrix Bäcklund transformations to construct model
constitutive laws for which the classical hodograph equations may be systematically reduced
to appropriate tractable canonical forms in subsonic, transonic and supersonic flow régimes.
The celebrated Kármán–Tsien two-parameter pressure-density model law of [88] as extensively
applied in subsonic gasdynamics, arises as a particular reduction. The Bäcklund transforma-
tions as introduced in the model gas law context of [58], suitably interpreted and extended,
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remarkably, turn out to have application in (2 + 1)-dimensional soliton theory [52, 53]. In non-
linear elastodynamics, model multi-parameter stress-strain laws were constructed in [17] which
allow the analytic treatment of aspects of shock-less pulse propagation in bounded nonlinear
elastic media. Comparison of experimental stress-strain relations with such model laws was
investigated, in particular, for the dynamic compression of saturated soil, dry sand and clay
silt. A Bäcklund transformation may be introduced at the level of the stress-strain laws for the
uniaxial Lagrangian elastodynamic system treated in [17]. The single action of this Bäcklund
transformation to the classical Hooke’s law generates the multi-parameter class of (T, e) laws
applied extensively therein. Moreover application of a nonlinear superposition principle associ-
ated with the Bäcklund transformation permits the construction of more general model nonlinear
(T, e)-laws for which the (1+1)-dimensional elastodynamic system may be iteratively reduced to
that associated with the canonical Hooke’s law. There is again a remarkable solitonic connection
in that the nonlinear superposition principle acting on the (T, e)-laws turns out to be nothing
but the permutability theorem for the potential Korteweg–de Vries hierarchy (see, e.g., [79]).

In nonlinear elastostatics, model stress-deformation laws have been introduced by Neuber
in [63, 64] in connection with the problem of determining the stress-distribution in shear-strained
isotropic prismatical bodies. Loewner-type Bäcklund transformations were applied in [24] to
the Neuber elastostatic system to solve a class of indentation boundary value problems for
both Neuber–Sokolovsky and power law model stress-deformation relations. The application
of model B-H and D-E constitutive laws in the analysis of the propagation of plane polarised
electromagnetic waves through nonlinear dielectric media has been described in [51]. In general
terms, it was shown in [82] that model constitutive laws as constructed via the Bäcklund ap-
proach introduced by Loewner, corresponds to solitonic solutions generated by a Darboux-type
transformation.

With regard to reciprocal transformations and their role in the construction of model con-
stitutive laws one may cite, in particular, the investigation of Storm in [85] concerning heat
conduction in simple monatomic metals. Therein, a class of model (cp(T ), k(T )) temperature
T -dependent laws was introduced for which a (1 + 1)-dimensional nonlinear heat conduction
equation may be reduced via a reciprocal transformation to the classical linear heat equation.
The applicability of these model laws was justified in [85] for appropriate specific heat cp(T ) and
thermal conductivity k(T ) over wide temperature ranges for such materials as aluminium, silver,
sodium, cadium, zinc, copper and lead. This kind of reduction via a reciprocal transformation
may be extended to hyperbolic systems that correspond to multi-parameter model laws that
arise in Cattaneo-type conduction and nonlinear visco-elasticity (see, e.g., [83]).

The preceding attests to the importance and wide range of physical applications of model
constitutive laws in nonlinear continuum mechanics together with intriguing solitonic connec-
tions. The six classical Painlevé equations arise in a wide range of physical applications and play
a fundamental role in modern soliton theory (see, e.g., [20, 25, 34, 40]). In the present work,
model multi-parameter specific energy laws have been isolated which allow symmetry reduction
of a Korteweg capillarity system to consideration of a hybrid Ermakov–Painlevé II equation
and thereby to the linked integrable PXXXIV equation. In conclusion, it is remarked that the
Ermakov–Painlevé II symmetry reduction presented here is also valid for a superfluidity model
system involving a de Broglie Bohm potential as set down in [69].
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107 (2001), 253–291.

[46] Kajiwara K., Masuda T., A generalization of determinant formulae for the solutions of Painlevé II
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a Bäcklund transformation, J. Math. Anal. Appl. 240 (1999), 367–381.

[75] Rogers C., Malomed B., Chow K., An H., Ermakov–Ray–Reid systems in nonlinear optics, J. Phys. A:
Math. Theor. 43 (2010), 455214, 15 pages.

[76] Rogers C., Ramgulam U., A nonlinear superposition principle and Lie group invariance: application in
rotating shallow water theory, Internat. J. Non-Linear Mech. 24 (1989), 229–236.

[77] Rogers C., Schief W.K., Intrinsic geometry of the NLS equation and its auto-Bäcklund transformation, Stud.
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