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Abstract. We present a quantization of a Lie coideal structure for twisted half-loop algebras
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1 Introduction

The Yangian Y(g) is a flat quantization of the half-loop Lie algebra L+ ∼= g[u] of a finite-
dimensional simple complex Lie algebra g [17]. The name Yangian is due to V.G. Drinfeld to
honour C.N. Yang who found the simplest solution of the Yang–Baxter equation, the rational R
matrix [47] (see also [8, 9]). This R matrix and the Yang–Baxter equation were discovered in the
studies of exactly solvable two-dimensional statistical models and quantum integrable systems.
One of the most important results was the quantization of the inverse scattering method by
Leningrad’s school [46] that lead to the formulation of quantum groups in the so-called RTT
formalism [44]. These quantum groups are deformations of semisimple Lie algebras and are
closely associated to quantum integrable systems. In particular, the representation theory of
the Yangian Y(sl2), which is one of the simplest examples of the infinite-dimensional quantum
groups, is used to solve the rational 6-vertex statistical model [9], the Heisenberg (XXX) spin
chain [23], the principal chiral field model with the SU(2) symmetry group [22, 33].

The mathematical description of quantum groups and of quantization of Lie bi-algebras was
presented by Drinfeld in his seminal work [17] (see also [18]). Drinfeld gave a quantization
procedure for the universal enveloping algebra U(g̃) for any semisimple Lie algebra g̃.1 The
quantization is based on the Lie bi-algebra structure on g̃ given by a skew symmetric map
δ : g̃ → g̃ ∧ g̃, the cocommutator. A quantization of (g̃, δ) is a (topological) Hopf algebra
(U~(g̃),∆~), such that U~(g̃)/~U~(g̃) ∼= U(g̃) as a Hopf algebra and

δ(x) ∼
(
∆~(X)− σ ◦∆~(X)

)
/~ (mod ~),

This paper is a contribution to the Special Issue on Recent Advances in Quantum Integrable Systems. The
full collection is available at http://www.emis.de/journals/SIGMA/RAQIS2016.html

1Throughout this manuscript we use g̃ to denote any Lie algebra, while the undecorated g is reserved for
finite-dimensional simple complex Lie algebras.
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where σ(a⊗ b) = b⊗ a and X is any lifting of x ∈ g̃ to U~(g̃). The Lie bi-algebra structure on g̃
can be constructed from the Manin triple (g̃, g̃+, g̃−), where g̃± are the isotropic subalgebras of g̃
such that g̃+ ⊕ g̃− = g̃ as a vector space and g̃− ∼= g̃∗+, the dual of g̃+. Then the commutation
relations of the quantum group can be obtained by requiring ∆~ to be a homomorphism of
algebras, ∆~ : U~(g̃)→ U~(g̃)⊗ U~(g̃). The question of the existence of such a quantization for
any Lie bi-algebra was raised by Drinfeld in [19] and was answered by P. Etingof and D. Kazhdan
in [20]. They proved that any finite- or infinite-dimensional Lie bi-algebra admits a quantization.
Here we will consider only the Yangian case, U~(g̃) = Y(g) with g̃ = L+. We will use the so-called
Drinfeld J presentation which is very convenient to approach the quantization problem.

In physics, quantum groups are related to quantum integrable models without boundaries
and their extensions to models with boundaries. The underlying symmetry of models with
boundaries is given by coideal subalgebras of quantum groups that were introduced in the
context of (1+1)-dimensional quantum field theories on a half-line by Cherednik [15] and in
the context of one-dimensional spin chains with boundaries by Sklyanin [45] in the so-called
reflection equation algebra formalism. Mathematical aspects of reflection algebras in the RTT
presentation, called twisted Yangians, were first considered by G. Olshanskii in [42] and were
further explored in [24, 25, 26, 36, 37, 38, 39] (also see references therein). A similar approach
for the q-deformed universal enveloping and quantum loop Lie algebras, Uq(g) and Uq(ĝ), was
considered in [6, 14, 40].

A slightly different approach to coideal subalgebras, using Serre–Chevalley presentation
of Uq(g) was surveyed by G. Letzter in [30]. Here coideal subalgebras of Uq(g) were constructed
using quantum symmetric pairs, see, e.g., [29], and have been classified for all finite-dimensional
semisimple Lie algebras. Examples of coideal subalgebras of quantum affine Lie algebras of
type A in the Serre–Chevalley presentation were the q-Onsager algebra [3, 4] and the generalized
q-Onsager algebras [5]. A generalization of quantum symmetric pairs for infinite-dimensional
Lie algebras of type A was proposed in [43] and the general theory of quantum symmetric pairs
for Kac–Moody Lie algebras was developed in [28]. A remarkably simple approach to coideal
subalgebras based on the Drinfeld’s original construction of Yangians, usually referred to as
Drinfeld first or simply as Drinfeld J presentation, was introduced in [16] (see also [32]) and is
now conveniently called the MacKay twisted Yangians [14].

Twisted Yangians, which we denote by Y(g, h)tw, are in exact correspondence with the sym-
metric pair decomposition of g given by a proper involution θ [1, 27]. The decomposition is given
by g = h ⊕ m with θ(x) = x for all x ∈ h, θ(y) = −y for all y ∈ m, the positive and negative
eigenspaces of θ. For the half-loop Lie algebra this decomposition is given by L+ = H+ ⊕M+,
where the positive eigenspace of θ is the twisted current Lie algebra H+ ∼= (h ⊕ um)[u2]. The
reflection equation algebra formalism provides evidence of the existence of a quantization of
such a symmetric pair. More generally, P. Etingof and D. Kazhdan have shown in [21] that any
homogeneous space G/H admits a local quantization. In [10], the notion of left and right Lie
coideal structures2 θ-invariant Lie subalgebras, denoted τ and τ ′, respectively, was introduced
by one of the authors. The Lie coideal structure is in one-to-one correspondence with a twisted
version of the Manin triple (g̃, g̃+, g̃−) and gives a quantization scheme for the θ-invariant Lie
subalgebra leading to a quantum coideal subalgebra. The Lie coideal structure corresponds to
the splitting δ = τ + τ ′ of the so-called coisotropic cocommutator δ of a Lie bi-algebra satisfying
δ(H+) ∈ M+ ∧H+ [41, 48]. Here we consider the left Lie coideal structure, which allows us to
construct a quantization of twisted half-loop Lie algebras leading to quantum coideal subalgebras
called twisted Yangians in Drinfeld J presentation.

A quantization of the twisted half-loop Lie algebras for rank(g) = 1 case was shown in [10].
In this paper we consider twisted Yangians Y(g, h)tw in the Drinfeld J presentation for any
rank(g) ≥ 2. In particular, we present a quantization procedure which holds for all symmetric

2The term “Lie bi-ideal structure” is used in [10] instead.
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pairs of the half-loop Lie algebras of finite-dimensional simple complex Lie algebras of rank
g ≥ 2. These symmetric pairs follow from the ones of the simple complex Lie algebras that
have been classified by Araki [1] (see also [27]). Such symmetric pairs can be grouped into four
classes: h is simple, h = a ⊕ b, h = a ⊕ k and h = a ⊕ b ⊕ k, where a and b are simple Lie
subalgebras of h, and k is a one-dimensional Lie algebra. We will further refer to all of these
cases as the θ 6= id case. We also consider the trivial involution θ of g. Being trivial at the Lie
algebra level, this involution can be extended non-trivially to the half-loop Lie algebra. In this
case the θ-fixed subalgebra is the even half-loop Lie algebra g[u2] isomorphic to g[u] as a Lie
algebra. We will refer to this setup as the θ = id case. The main results of this paper are
Theorems 5.5 and 5.6, which are analogues of the Theorem 2 in [17] for the twisted Yangians
for θ 6= id and θ = id cases, respectively. We call the defining relations of the twisted Yangians
the horrific relations due to their complex form and similarity to the Drinfeld terrific relations.
A proof the horrific relations of Theorem 5.5 is given in Section 7.5. A proof of the horrific
relations of Theorem 5.6 is outlined in Section 7.6.

The results of this paper provide a uniform way of constructing twisted Yangians for all
symmetric pairs (g, h), when g is a simple complex Lie algebra. Twisted Yangians in Drinfeld J
presentation have important applications in quantum integrable models, where it is important
to know the minimal set of the defining relations of the underlying symmetry algebra. For
example, twisted Yangians emerge as the non-abelian symmetries of the principal chiral models
defined on a half-line and can be used to find the scalar boundary S-matrices and thus solve the
spectral problem [16, 32, 33]. The closure relations are necessary in constructing representation
theory of these algebras and allow to classify algebraically all scalar and dynamical boundary
conditions and to construct the corresponding dynamical boundary S-matrices; i.e., for the
affine Toda models with open boundaries this was done in [5, 11]. Twisted Yangians in Drinfeld
J presentation may also be used to solve the spectral problem of a semi-infinite XXX spin chain
for an arbitrary simple Lie algebra using the “Onsager method” [7]. We also remark, that twisted
Yangians of this type were shown to play an important role in quantum integrable systems for
which the RTT presentation of the underlying symmetries is not well understood, for example
in the AdS/CFT correspondence [34, 35].

The paper is organized as follows. In Section 2 we recall the basic facts about simple complex
Lie algebras and define the symmetric pair decomposition with respect to involution θ. Then, in
Section 3, we recall the description of the half-loop Lie algebra L+ of g and twisted half-loop Lie
algebra H+ with respect to the symmetric pair decomposition of L+. In Section 4 we construct
the Lie bi-algebra structure on L+ and Lie coideal structure on H+ that provide the necessary
setup for the quantization procedure presented in Section 5. A low rank example is presented
Section 6. We give the explicit form of twisted Yangians in Drinfeld J presentation when g = sl3.
Section 7 contains the proofs which were omitted in the main part of the paper due to their
length and for convenience of the reader.

2 Definitions and preliminaries

2.1 Lie algebra

Consider a finite-dimensional simple complex Lie algebra g of dimension dim(g) = n, with
a basis {xa} such that

[xa, xb] = α c
ab xc, α c

ab + α c
ba = 0, α c

ab α
e

dc + α c
daα

e
bc + α c

bd α
e

ac = 0. (2.1)

Here α c
ab are the structure constants of g and the Einstein summation rule of the repeated

indices is assumed. Let ηab denote the non-degenerate invariant bilinear (Killing) form on g in
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the {xa} basis

(xa, xb)g = ηab,

that can be used to lower indices {a, b, c, . . .} of the structure constants

α d
ab ηdc = αabc with αabc + αacb = 0.

The inverse of ηab is given by ηab and satisfies ηabη
bc = δ ca . Set {x, y} = 1

2(xy + yx). Let
Cg = ηab{xa, xb} denote the second order Casimir operator associated to g and let cg be its
eigenvalue in the adjoint representation. For a simple Lie algebra it is non-zero and is given by

cgδ
d
c = ηabα e

ac α
d

be = α eb
c α d

be . (2.2)

Here α bc
a are the structure constants in the dual basis, namely if {xa} denote the basis of g

defined by (xa, x
b)g = δ ba , then [xb, xc] = α bc

a x
a. Constants α bc

a satisfy dual co-Jacobi identity,
which is obtained by raising one of the lower indices of the Jacobi identity in (2.1). Moreover,
contracting α bc

a with the Lie commutator in (2.1) gives

α bc
a [xc, xb] = cgxa. (2.3)

2.2 Symmetric pair decomposition

Let θ : g → g be an involution, θ2 = id. Then g can be decomposed into positive and negative
eigenspaces of θ, i.e., g = h ⊕ m with θ(x) = x for all x ∈ h and θ(y) = −y for all y ∈ m, here
dim(h) = h, dim(m) = m satisfying h+m = n. Numbers h and m correspond to the number of
positive and negative eigenvalues of θ. This decomposition leads to the symmetric pair relations

[h, h] ⊆ h, [h,m] = m, [m,m] = h.

From the classification of symmetric pairs for simple complex Lie algebras it follows that the
invariant subalgebra h is a (semi)simple or reductive Lie algebra which can be decomposed into
a direct sum of two simple complex Lie algebras a and b, and a one-dimensional Lie algebra k,
at most (see, e.g., [27, Section 5]). We write h = a⊕ b⊕ k. Set dim(a) = a and dim(b) = b. Let
the elements

Xi ∈ a, Xi′ ∈ b, Xz ∈ k, Yp ∈ m,

with i = 1, . . . , a, i′ = 1, . . . , b and p = 1, . . . ,m, (2.4)

be a basis of g such that θ(Xα) = Xα for any α ∈ {i, i′, z}, and θ(Yp) = −Yp. Here we use
indices i(j, k, . . . ) for elements Xα ∈ a, primed indices i′(j′, k′, . . . ) for elements Xα ∈ b, index
α = z for the element Xα ∈ k, and indices p(q, r, . . .) for Yp ∈ m, when needed. Note that Xz is
central in h. We will denote the commutators in this basis as follows:

[Xα, Xβ] = f γ
αβXγ with f γ

αβ = 0 if α 6= β or α 6= γ or β 6= γ,

[Xα, Yp] = g q
αpYq, [Yp, Xα] = g q

pαYq, [Yp, Yq] =
∑
α
w α
pq Xα. (2.5)

The structure constants above are obtained from the ones of g by restricting to the appropriate
elements. Here and further we will use the sum symbol

∑
α to denote the summation over all

simple subalgebras of h, e.g.,
∑

αw
α

pq Xα = w i
pqXi + w i′

pq Xi′ + w z
pq Xz for h = a ⊕ b ⊕ k. The

Einstein summation rule for the Greek indices will be used in cases when the sum is over a single
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simple subalgabera of h. The notation α 6= γ means that indices α and γ correspond to different
subalgebras of h. The structure constants given above satisfy the (anti-)symmetry relations

f γ
αβ + f γ

βα = 0, g q
µp + g q

pµ = 0, w µ
pq + w µ

qp = 0,

which follow from the properties of the Lie bracket, and the homogeneous and mixed Jacobi
identities

f ν
αβ f

µ
γν + f ν

γα f
µ

βν + f ν
βγ f

µ
αν = 0, f µ

αβ g
s

pµ + g q
βp g

s
αq − g q

αpg
s

βq = 0,

w β
pq f

µ
αβ + g r

αpw
µ

qr − g r
αqw

µ
pr = 0, (2.6)

with α(β, γ, . . . ) = i(j, k, . . . ) ∈ a or α(β, γ, . . . ) = i′(j′, k′, . . . ) ∈ b and∑
α

(w α
pq g

s
rα + w α

qr g
s

pα + w α
rp g

s
qα ) = 0, g r

pαw
β

qr − g r
qαw

β
pr = 0 for α 6= β. (2.7)

We will further refer to the set {Xα, Yp} = {Xi, Xi′ , Xz, Yp} given by (2.4) and satisfying rela-
tions (2.5)–(2.7) as the symmetric space basis for a given Lie algebra g and involution θ.

Let κ denote the Killing form on g in the symmetric space basis. It has a block-diagonal
form, namely

(Xi, Xj)g = (κa)ij , (Xi′ , Xj′)g = (κb)i′j′ ,

(Xz, Xz)g = (κk)zz, (Yp, Yq)g = (κm)pq,

with the remaining entries being trivial. The Casimir element Cg in this basis decomposes as

Cg = CX + CY =
∑
α,β

(κh)
αβ{Xα, Xβ}+ (κm)pq{Yp, Yq},

CX = C + C ′ + Cz = (κa)
ij{Xi, Xj}+ (κb)

i′j′{Xi′ , Xj′}+ (κk)
zz{Xz, Xz}.

Here καβ ∈ {(κa)ij , (κb)i
′j′ , (κk)

zz}. The block diagonal decomposition of the inverse Killing
form can be used to raise the indices of the structure constants. We set

f βγ
α = κβµf γ

αµ , g qνp = κνρg q
ρp , w pq

ν = (κm)prg q
νr

with α(β, γ, µ, . . . ) = i(j, k, . . . ) or i′(j′, k′, . . . ) and ν(ρ) = i(j) or i′(j′) or z(z). Let us now
consider the commutation relations. For generators Yp we have

[Yp, CX ] = 2
∑
α
g αqp {Yq, Xα}, [Yp, CY ] = 2

∑
α
g qαp {Yq, Xα}.

The remaining commutation relations are trivial. Let ca, cb, cz and cm be the eigenvalues of C, C ′,
Cz and CY in the adjoint representation, respectively. We have cg = ca+cb+cm+cz. Using (2.3)
we find

f βν
α [Xν , Xβ] = c(α)Xα, w qp

γ [Yp, Yq] = c̄(γ)Xγ , (2.8)

with α = i(i′), γ = i(i′, z), c̄(α) = cg − c(α), c(i) = ca, c(i′) = cb and c(z) = 0. Using (2.2), (2.5)
and the equality above we obtain

f µν
α f β

νµ = c(α)δ
β
α , w qp

α w β
pq = c̄(α)δ

β
α , w qp

α w γ
pq = 0 for α 6= γ, (2.9)

and α = i(i′, z), β = j(j′, z). Finally, for Yq we have∑
α
g pαq [Xα, Yp] = 1

2cgYq,
∑
α
g rαp g q

αr = 1
2cgδ

q
p . (2.10)
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3 Symmetric spaces and simple half-loop Lie algebras

3.1 Half-loop Lie algebra

Consider the half-loop Lie algebra L+ generated by elements x
(k)
a with k ≥ 0 and a = 1, . . . ,

dim(g). It is an infinite-dimensional graded Lie algebra with the grading given by deg
(
x
(k)
a

)
= k

and the defining relations

[x(k)a , x
(`)
b ] = α c

ab x
(k+`)
c . (3.1)

This algebra can be identified with the set of polynomial maps f : C→ g using the Lie algebra

isomorphism L+ ∼= g[u] = g⊗ C[u] with x
(k)
a
∼= xa ⊗ uk.

The algebra L+ has another presentation, conveniently called Drinfeld J presentation.

Proposition 3.1. The half-loop Lie algebra L+ is isomorphic to the algebra generated by ele-
ments xa, J(xb) satisfying

[xa, xb] = α c
ab xc, J(µxa + νxb) = µJ(xa) + νJ(xb), [xa, J(xb)] = α c

ab J(xc), (3.2)

[J(xa), J([xb, xc])] + [J(xb), J([xc, xa])] + [J(xc), J([xa, xb])] = 0, (3.3)

[[J(xa), J(xb)], J([xc, xd])] + [[J(xc), J(xd)], J([xa, xb])] = 0, (3.4)

for any µ, ν ∈ C. The grading is given by deg(xa) = 0 and deg(J(xa)) = 1. The isomorphism is

given by the map xa 7→ x
(0)
a and J(xa) 7→ x

(1)
a .

Relations (3.3) and (3.4) are homogeneous relations of degree 2 and 3. In the rank(g) = 1 case
the relation (3.3) is trivial and for the rank(g) ≥ 2 cases the relation (3.4) is implied by (3.3).
Since we were unable to locate a complete proof of this proposition in the literature, we have
given one in Section 7.1. (An outline of a proof is given in [13, Section 12.1].)

3.2 Twisted half-loop Lie algebra

Let θ(xa) = θ ba xb. We cab extend the involution θ of g to the whole of L+ as follows:

θ
(
x(k)a

)
= (−1)kθ ba x

(k)
b
∼= (−1)kθ(xa)⊗ uk for k ≥ 0,

or in the polynomial map point of view, θ(x(u)) = θ(x)(−u).
The twisted half-loop Lie algebra H+ ∼= g[u]θ is a fixed-point subalgebra of L+ generated

by the elements stable under the action of the (extended) involution θ, namely H+ = span{x ∈
L+ | θ(x) = x}. In the physics literature it is often referred to as the twisted current algebra.

Let θ 6= id. Consider the symmetric space basis of g. We write the half-loop Lie algebra L+

in terms of the elements X
(k)
α and Y

(k)
q satisfying[

X(k)
α , X

(`)
β

]
= f γ

αβX
(k+`)
γ ,

[
X(k)
α , Y (`)

p

]
= g q

αpY
(k+`)
q ,[

Y (k)
p , Y (`)

q

]
=
∑
α
w α
pq X

(k+`)
α , (3.5)

for all k, ` ≥ 0. Involution θ acts on these elements by θ
(
X

(k)
α

)
= (−1)kX

(k)
α and θ

(
Y

(k)
p

)
=

(−1)k+1Y
(k)
p . Thus the half-loop Lie algebra decomposes as L+ = H+ ⊕M+, where H+ =

span
{
X

(2k)
α , Y

(2k+1)
q

}
is the subalgebra of L+ generated by θ-invariant elements, and M+ =

span
{
X

(2k+1)
α , Y

(2k)
q

}
is the subset of L+ of θ-anti-invariant elements. In the case when θ = id

we have g[u]θ ∼= g[u2], that is H+ = span
{
x
(2k)
a

}
and M+ = span

{
x
(2k+1)
a

}
.

We now give another presentation of H+, which an analogue of the Drinfeld J presentation
of L+.
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Proposition 3.2. Let rank(g) ≥ 2 and θ 6= id. Then the twisted half-loop Lie algebra H+ is
isomorphic to the algebra generated by elements Xα, B(Yp) satisfying

[Xα, Xβ] = f γ
αβ Xγ , [Xα, B(Yp)] = g q

αp B(Yq),

B(aYp + bYq) = aB(Yp) + bB(Yq), (3.6)

[B(Yp), B(Yq)] +
∑
α

(c̄(α))
−1w α

pq w
rs
α [B(Yr), B(Ys)] = 0, (3.7)

[[B(Yp), B(Yq)], B(Yr)] + 2c−1g

∑
α

(κm)tuw α
pq g

s
rα [[B(Ys), B(Yt)], B(Yu)] = 0, (3.8)

for all a, b ∈ C. The isomorphism is given by the map Xα 7→ X
(0)
α and B(Yp) 7→ Y

(1)
p .

The proof is given in Section 7.2. Note that in the contrast to L+, the twisted algebra H+ for
rank(g) ≥ 2 has degree-2 and degree-3 defining relations. The rank(g) = 1 case is exceptional.
The Drinfeld J presentation in this case has a degree-4 relation instead; see [10, Section 4.2].

Proposition 3.3. Let rank(g) ≥ 2 and θ = id. Then the even half-loop Lie algebra is isomorphic
to the algebra generated by elements xi, G(xj) satisfying

[xi, xj ] = α k
ij xk, G(λxa + µxb) = λG(xa) + µG(xb), [xi, G(xj)] = α k

ij G(xk), (3.9)

[G(xi), G([xj , xk])] + [G(xj), G([xk, xi])] + [G(xk), G([xi, xj ])] = 0, (3.10)

for any µ, ν ∈ C. The isomorphism is given by the map xi 7→ x
(0)
i and G(xi) 7→ x

(2)
i .

The proof is analogous to that of Proposition 3.1, since g[u2] ∼= g[u] as a Lie algebra.

4 Lie bi-algebras and coideals

4.1 Lie bi-algebra structure of a half-loop Lie algebra

A Lie bi-algebra structure on L+ is a skew-symmetric linear map δ : L+ → L+ ⊗ L+, the
cocommutator, such that δ∗ is a Lie bracket and δ is a 1-cocycle, δ([x, y]) = x.δ(y) − y.δ(x),
where dot denotes the adjoint action on L+ ⊗L+. The cocommutator is given for the elements
in the Drinfeld J presentation of L+ by

δ(xa) = 0, δ(J(xa)) = [xa ⊗ 1,Ωg], where Ωg = ηabxa ⊗ xb. (4.1)

This cocommutator can be constructed from the Manin triple (L,L+,L−), with L = g((u−1))
the loop algebra generated by elements x(n) with x ∈ g, n ∈ Z and defining relations (3.1) (but
with n,m ∈ Z), L+ = g[u] the positive half-loop algebra (3.1), and L− = g[[u−1]] the negative
half-loop algebra (i.e., n,m < 0; see, e.g., [13, Example 1.3.9]). The triple (L,L+,L−) satisfies
axioms of the Manin triple.

Definition 4.1 ([18]). A Manin triple is a triple of Lie algebras (g̃, g̃+, g̃−) together with a non-
degenerate symmetric bilinear form ( , )g̃ on g̃ invariant under the adjoint action of g̃ such
that:

• g̃+ and g̃− are Lie subalgebras of g̃;

• g̃ = g̃+ ⊕ g̃− as a vector space;

• ( , )g̃ is isotropic for g̃± (i.e., (g̃±, g̃±)g̃ = 0);

• (g̃+)∗ ∼= g̃−.
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The invariant bilinear form on g̃ = L satisfying the requirements above is given by(
x(k), y(l)

)
L

= −(x, y)gδk+l+1,0,

or in the polynomial map point of view (x(u), y(u))L = − res0(x(u), y(u))g where ‘res0’ means
taking the coefficient of u−1 in the Laurent series expansion. This data together with the
definition of the Manin triple uniquely fixes the cocommutator δ on L+.

Remark 4.2. If (g̃, g̃+, g̃−) is a Manin triple for dim(g̃+) = ∞, then in general one must take
(g̃+)∗ ∼= g−, where g− is a suitable completion of g̃−. However in our case (L+)∗ ∼= L−, as it is
easy to see:

(L+)∗ ∼=
(⊕

k≥0 g⊗ uk
)∗

=
∏
k≥0(g⊗ uk)∗ =

∏
k≥1 g⊗ u−k ∼= L−.

Here in the second equality we have used the identity (
⊕

i≥0 Vi)
∗ =

∏
i≥0 V

∗
i , where Vi denotes

a finite-dimensional vector space; an equivalent identity is used in the last equality.

The cocomutator is obtained using the duality between L+ and L−. Recall that δ∗ : L− ⊗
L− → L− is the Lie bracket of L−. We can deduce the cocommutator δ of L+ from the duality
relation

(δ(x), y ⊗ z)L⊗L = (x, [y, z])L. (4.2)

The cocommutator of the degree zero generators x
(0)
a = xa is trivial since the degree of [y, z] ∈ L−

is strictly less than −1, thus (xa, [y, z])L = 0 for all [y, z] ∈ L−. This implies that (δ(xa), y ⊗
z)L⊗L = 0 for all y, z ∈ L− and thus

δ(xa) = 0.

The case of degree one generators x
(1)
a = J(xa) is considered in a similar way. For this case we

have the non-trivial pairing
(
J(xa), x

(−2)
b

)
L

= −ηab. Using x
(−2)
b = c−1g α ji

b

[
x
(−1)
i , x

(−1)
j

]
and the

duality relation (4.2) we obtain the constraint(
δ(J(xa)), α

ji
b x

(−1)
i ⊗ x(−1)j

)
L⊗L = −cgηab.

Writing δ(J(xa)) = v `ka xk ⊗ x` for some v `ka ∈ C we deduce that v `ka αb`k = −cgηab. By (2.2) we
have that α k`

a αb`k = cgηab and thus v `ka = −α k`
a giving

δ(J(xa)) = α `k
a xk ⊗ x` = [xa ⊗ 1,Ωg].

4.2 Lie coideal structure of a twisted half-loop Lie algebra

The Lie coideal structure of a twisted half-loop Lie algebra is constructed by employing the
anti-invariant Manin triple twist. Here we will consider the left Lie coideal structure. The right
Lie coideal is obtained in a similar way.

Definition 4.3 ([10]). The anti-invariant Manin triple twist φ of (L,L+,L−) is an automor-
phism of L satisfying:

• φ is an involution;

• φ(L±) = L±;

• (φ(x), y)L = −(x, φ(y))L for all x ∈ L+ and y ∈ L−.
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Given an involution θ of g one may uniquely associate the anti-invariant Manin triple twist φ,
that is the natural extension of θ to the whole L:

φ(x(k)a ) = (−1)kθ ba x
(k)
b
∼= (−1)kθ(xa)⊗ uk for all k ∈ Z,

satisfying the definition above and leading to the symmetric pair decomposition of the Manin
triple (L,L+,L−):

L± = H± ⊕M± such that φ(x) = x, ∀x ∈ H± and

φ(y) = −y, ∀ y ∈M±. (4.3)

From the anti-invariance of φ for ( , )L it follows that

(H−,H+)L = (M−,M+)L = 0.

Thus we must have (H±)∗ ∼= M∓. This is easy to check:

(H+)∗ ∼=
(⊕

k≥0(h⊕ um)⊗ u2k
)∗

=
∏
k≥0

(
(h⊕ um)⊗ u2k

)∗
=
∏
k≥1

(
(uh⊕m)⊗ u−2k

) ∼= M−,

(H−)∗ ∼=
(⊕

k≥1(h⊕ um)⊗ u−2k
)∗

=
∏
k≥1

(
(h⊕ um)⊗ u−2k

)∗
=
∏
k≥0

(
(uh⊕m)⊗ u2k

) ∼= M+.

This decomposition of the Manin triple allows us to construct a Lie coideal structure on H+.

Definition 4.4 ([10]). Let φ be an anti-invariant Manin triple twist for (L,L+,L−) which leads
to the symmetric space decomposition (4.3). Then the linear map τ : H+ →M+ ⊗H+ is a left
Lie coideal structure for (H+,M+) if it is the dual of the following action of H− on M−,

τ∗ : H− ⊗M− →M−,

x⊗ y 7→ [x, y]L− ,
(4.4)

for all x ∈ H− and y ∈M−.

Given as Manin triple (L,L+,L−) and the twist φ the requirement (4.4) uniquely fixes the
Left coideal structure τ of (L+,H+).

Proposition 4.5. The left Lie coideal structure of (L+,H+), τ : H+ →M+ ⊗H+, is given by

θ 6= id: τ(Xα) = 0, τ(B(Yp)) = [Yp ⊗ 1,ΩX ], ΩX =
∑
α,β

(κh)
αβXα ⊗Xβ, (4.5)

θ = id: τ(xa) = 0, τ(G(xa)) = [J(xa)⊗ 1,Ωg]. (4.6)

Proof. The construction of the left Lie coideal structure τ from the anti-invariant Manin triple
twist is similar to the one of the Lie bi-algebra structure from the Manin triple. We have to
consider the duality relation (τ(x), y ⊗ z)L = (x, [y, z])L with x ∈ H+, y ∈ H− and z ∈M−.

Consider the case θ 6= id. For the degree zero generators X
(0)
α = Xα, we have (Xα, [y, z])L = 0

for all y ∈ H− and z ∈M−. This follows by similar arguments as for the degree zero generators
of the half-loop Lie algebra. Hence we have

τ(Xα) = 0.
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For elements Y
(1)
p = B(Yp) we have a non trivial paring

(
B(Yp), Y

(−2)
q

)
L

= −(κm)pq. Then,

using relation Y
(−2)
q =

∑
α 2c−1g g αpq

[
Y

(−1)
p , X

(−1)
α

]
and the duality relation we obtain∑

α

(
τ(B(Yp)), g

αr
q Y (−1)

r ⊗X(−1)
α

)
L⊗L = −1

2cg(κm)pq.

It is clear from properties of the pairing that τ(B(Yp)) =
∑

β v
βs
p Ys ⊗ Xβ for some v βsp ∈ C.

We must have
∑

α v
αr
p gqαr = −1

2cg(κm)pq. Writing the second identity in (2.10) as
∑
α
g rαp gqαr =

−1
2cgηpq we find v αrp = −g rαp . Hence

τ(B(Yp)) = −
∑
α
g rαp Yr ⊗Xα = [Yp ⊗ 1,ΩX ].

The Lie coideal structure for the θ = id case follows from the pairing
(
G(xa), x

(−3)
b

)
L

= −(κg)ab
by similar arguments. �

For completeness we recall the remark which was stated by one of the authors in [10].

Remark 4.6. The notion of left (right) Lie coideal is related to the notion of co-isotropic
subalgebra h of a Lie bi-algebra (g, δ). It is a Lie subalgebra which is also a Lie coideal, meaning
that δ(h) ⊂ h ∧ g. We have δ(x) = τ(x) + τ ′(x), for x ∈ h with τ ′ = −σ ◦ τ the right ideal
structure.

5 Twisted Yangians as quantized Lie coideals

5.1 Quantization of Lie bi-algebras and Lie coideals

To obtain a quantization of the Lie coideal we need to introduce some additional notation. Recall
the definition of a bi-algebra and of a Hopf algebra. A bi-algebra is a quintuple (A,µ, ı,∆, ε)
such that (A,µ, ı) is an algebra and (A,∆, ε) is a coalgebra; here A is a C-module, µ : A⊗A→ A
is the multiplication, ∆: A → A ⊗ A is the comultiplication (coproduct), ı : C → A is the unit
and ε : A → C is the counit. A Hopf algebra is a bi-algebra with an antipode S : A → A, an
antiautomorphism of algebra. These maps are required to satisfy a set of compatibility relations
(see, e.g., [13, Section 4]). Since we are interested in left coideal subalgebras, we also need to
recall the notion of coideal.

Definition 5.1. Let A = (A,∆, ε) be a coalgebra. Then B = (B, , ε) is a left coideal of A if:

1) B is a submodule of A, i.e., there exists an injective homomorphism ϕ : B → A;

2) co-action is a left coideal map : B → A⊗B and is a homomorphism of modules;

3) coalgebra and coideal structures are compatible with each other, i.e., the following identi-
ties hold:

(∆⊗ id) ◦ = (id⊗ ) ◦ , (5.1)

(id⊗ϕ) ◦ = ∆ ◦ ϕ; (5.2)

4) ε : B → C is the counit.

The relation (5.1) is usually referred to as the coideal co-associativity of B. We will refer
to (5.2) as the coideal coinvariance. We call the map ϕ the natural embedding ϕ : B ↪→ A. The
definition of a coideal can be naturally extended for a bi-algebra. Namely, let A = (A,µ, η,∆, ε)
be a bi-algebra. Then B = (B,m, i, , ε) is a left coideal of A if: the triple (B,m, i), where m
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is the multiplication and i is the unit, is an algebra; B is a subalgebra of A; the triple (B, , ε)
is a coideal of (A,∆, ε). However note that ε is not a restriction of ε, that is ε ◦ ϕ 6= ε, since in
general B may have a larger center than A.

We are now ready to discuss quantization of Lie bi-algebras and their coideals. The next
definition, a quantization of a Lie bi-algebra g̃, is due to V.G. Drinfeld.

Definition 5.2 ([18]). Let (g̃, δ) be a Lie bi-algebra. We say that a quantized universal en-
veloping algebra (U~(g̃),∆~) is a quantization of (g̃, δ), or that (g̃, δ) is the quasi-classical limit
of (U~(g̃),∆~), if it is a topologically free C[[~]] module and:

1) U~(g̃)/~U~(g̃) is isomorphic to U(g̃) as a Hopf algebra;

2) for any x ∈ g̃ and any X ∈ U~(g̃) equal to x (mod ~) one has(
∆~(X)− σ ◦∆~(X)

)
/~ ∼ δ(x) (mod ~)

with σ the permutation map σ(a⊗ b) = b⊗ a.

Note that (U~(g̃),∆~) is a topological Hopf algebra over C[[~]] and is a topologically free C[[~]]
module. Drinfeld also noted that for a given Lie-bialgebra (g̃, δ), there exists a unique extension
of the map δ : g̃ → g̃ ⊗ g̃ to δ : U(g̃) → U(g̃) ⊗ U(g̃) which turns U(g̃) into a co-Poisson–Hopf
algebra. The converse is also true. In such a way (U~(g̃),∆~) can be viewed as a quantization
of (U(g̃), δ).

Let θ be an involution of g̃. We define a quantization of the Lie coideal
(
g̃θ, τ

)
following [10].

Definition 5.3. Let (g̃, δ) be a Lie bi-algebra and
(
g̃θ, τ

)
be a left Lie coideal. We say that a left

coideal subalgebra
(
U~
(
g̃θ
)
, ~
)

is a quantization of
(
g̃θ, τ

)
, or that

(
g̃θ, τ

)
is the quasi-classical

limit of
(
U~
(
g̃θ
)
, ~
)
, if it is a topologically free C[[~]] module and:

1) (U~(g̃),∆~) is a quantization of (g̃, δ);

2) U~
(
g̃θ
)
/~U~

(
g̃θ
)

is isomorphic to U
(
g̃θ
)

as a Lie algebra;

3)
(
U~
(
g̃θ
)
, ~
)

is a left coideal of (U~(g̃),∆~);

4) for any x ∈ g̃θ and any X ∈ U~
(
g̃θ
)

equal to x (mod ~) one has(
~(X)− (ϕ(X)⊗ 1 + 1⊗X)

)
/~ ∼ τ(x) (mod ~)

with ϕ the natural embedding U~
(
g̃θ
)
↪→ U~(g̃).

The Lie coideal structure τ can be extended to τ : U
(
g̃θ
)
→ U(g̃)⊗U

(
g̃θ
)

such that τ(a1a2) =
τ(a1) (a2) + τ(a2) (a1) [10]. However this does not turn

(
U
(
g̃θ
)
, , τ

)
into a co-Poisson–Hopf

structure. Rather it would be a “one sided coideal-Poisson” extension of the one-sided Lie
coideal

(
g̃θ, τ

)
. In the case of the two-sided coideal structures, the associated Poisson structures

are called “Poisson homogeneous spaces”. We refer to [12] and [21] for details on quantization
of such structures.

5.2 Yangians and twisted Yangians in Drinfeld J presentation

For any set of primitive elements xi1 , xi2 , . . . , xim of any associative bi-algebra over C, set

{xi1 , xi2 , . . . , xim} =
1

m!

∑
π
xπ(i1)xπ(i2) · · ·xπ(im),

where the sum is over all permutations π of the set of indices i1, i2, . . . , im and

〈xi1 , xi2 , . . . , xim〉n =
1

m!

∑
π
xπ(i1) · · ·xπ(in) ⊗ xπ(in+1) · · ·xπ(im). (5.3)
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such that

∆({xi1 , xi2 , . . . , xim}) =
m∑
n=0

(
m
n

)
〈xi1 , xi2 , . . . , xim〉n, (5.4)

where
(
m
n

)
denotes the binomial coefficient. Moreover, for any set of indices i1, . . . , im, set

a(i1ai2 · · · aim) =
∑
σ
aσ(i1)aσ(i2) · · · aσ(im),

where the sum is over the cyclic permutations, e.g., α d
(ab α

e
c)d = α d

ab α
e

cd + α d
bc α

e
ad + α d

ca α
e

bd .

Next, let us recall the definition of the Yangian as a quantization of the Lie bi-algebra (g[u], δ).

Theorem 5.4 ([17]). Let g be a finite-dimensional complex simple Lie algebra. Fix a (non-
zero) invariant bilinear form on g and a basis {xa}. There is, up to isomorphism, a unique
homogeneous quantization Y(g) := U~(g[u]) of (g[u], δ), with δ given by (4.1). It is topologically
generated by elements xa, J(xa) with the defining relations:

[xa, xb] = α c
ab xc, [xa, J(xb)] = α c

ab J(xc), J(λxa + µxb) = λJ(xa) + µJ(xb), (5.5)

[J(xa), J([xb, xc])] + [J(xb), J([xc, xa])] + [J(xc), J([xa, xb])] = 1
4~

2A
ijk
abc{xi, xj , xk}, (5.6)

[[J(xa), J(xb)], J([xc, xd])] + [[J(xc), J(xd)], J([xa, xb])] = 1
4~

2B
ijk
abcd{xi, xj , J(xk)}, (5.7)

for all xa ∈ g and λ, µ ∈ C. Here A
ijk
abc = α il

a α
jm
b α kn

c αlmn and B
ijk
abcd = α e

cd A
ijk
abe +α e

abA
ijk
cde. The

coproduct is

∆~(xa) = xa ⊗ 1 + 1⊗ xa, ∆~(J(xa)) = J(xa)⊗ 1 + 1⊗ J(xa) + 1
2~[xa ⊗ 1,Ωg]. (5.8)

The grading is deg(xa) = 0, deg(~) = 1, deg(J(xa)) = 1. The counit is given by ε~(xa) =
ε~(J(xa)) = 0. The antipode is

S(xa) = −xa, S(J(xa)) = −J(xa) + 1
4~cgxa. (5.9)

An outline of the proof can be found in [13, Section 12.1]. Let us make a remark on the
Drinfeld terrific relations (5.6) and (5.7), which are deformations of the relations (3.3) and (3.4),
respectively. The coproduct (5.8) is a solution of the quantization condition satisfying the co-
associativity property

(1⊗∆~) ◦∆~ = (∆~ ⊗ 1) ◦∆~.

The right-hand sides (rhs) of the terrific relations are tailored so that ∆~ : Y(g)→ Y(g)⊗Y(g) is
a homomorphism of algebras. Indeed, consider the co-action on the left-hand side (lhs) of (5.6).
The linear terms in ~ vanish due to the Jacobi identity. What remains are the quadratic terms
in ~, that are cubic and totally symmetric in xa. Hence the rhs of (5.6) must be of the form

~2Aijkabc{xi, xj , xk} for some set of coefficients Aijkabc ∈ C. By comparing the terms on the both

sides and using the Jacobi identity one finds Aijkabc = A
ijk
abc. Relation (5.7) is obtained in a similar

way.3

We now define twisted Yangians as quantizations of Lie coideals of twisted half-loop algebras
for both θ 6= id and θ = id cases.

3Showing (5.7) is more complicated since it requires a heavy usage of (5.6) and Jacobi identity. We were
unable to locate the explicit proof of the Drinfeld terrific relations in the mathematical literature available to us.
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Theorem 5.5. Let
(
g, gθ

)
be a symmetric pair decomposition of a finite-dimensional simple

complex Lie algebra g of rank(g) ≥ 2 with respect to the involution θ, such that gθ is the positive
eigenspace of θ. Let {Xα, Yp} be a symmetric space basis of g with respect to θ. There is, up to

isomorphism, a unique homogeneous quantization Y
(
g, gθ

)tw
:= U~

(
g[u]θ

)
of
(
g[u]θ, τ

)
, where τ

is given by (4.5). It is topologically generated by elements Xα, B(Yp) with the defining relations:

[Xα, Xβ] = f γ
αβXγ , [Xα,B(Yp)] = g q

αpB(Yq),

B(aYp + bYq) = aB(Yp) + bB(Yq), (5.10)

[B(Yp),B(Yq)] +
∑
α

(c̄(α))
−1w α

pq w
rs
α [B(Yr),B(Ys)] = ~2

∑
λ,µ,ν

Λλµνpq {Xλ, Xµ, Xν}, (5.11)

[[B(Yp),B(Yq)],B(Yr)] + 2c−1g

∑
α

(κm)tuw α
pq g

s
rα [[B(Ys),B(Yt)],B(Yu)]

= ~2
∑
λ,µ,u

Υλµu
pqr {Xλ, Xµ,B(Yu)}, (5.12)

for all Xα, Yp ∈ g and a, b ∈ C. Here

Λλµνpq = 1
3

(
gµtpg

λu
q +

∑
α

(c̄(α))
−1w α

pq w
rs
α gµtrgλus

)
w ν
tu , (5.13)

Υλµu
pqr = 1

4

∑
α

(
w α
st g

λs
p g µtq g u

αr +
∑
β

w α
pq f

λβ
α g µsr g u

βs

)
+ 1

2c
−1
g

∑
α,γ

(κm)vxw γ
pq g

y
rγ

(
w α
st g

λs
y g µtv g u

αx +
∑
β

w α
yv f

λβ
α g µsx g u

βs

)
. (5.14)

The coideal structure is given by the co-action ~ : Y
(
g, gθ

)tw → Y(g)⊗ Y
(
g, gθ

)tw
such that

~(Xα) = Xα ⊗ 1 + 1⊗Xα,

~(B(Yp)) = ϕ(B(Yp))⊗ 1 + 1⊗B(Yp) + ~[Yp ⊗ 1,ΩX ], (5.15)

where the embedding ϕ : Y
(
g, gθ

)tw → Y(g) is

ϕ(B(Yp)) = J(Yp) + 1
4~[Yp, CX ]. (5.16)

The grading is deg(Xα) = 0, deg(~) = 1, deg(B(Yp)) = 1. The counit is ε~(Xα) = ε~(B(Yp)) = 0
for all non-central Xα. In the case when gθ is reductive with its centre k generated by Xz, the
counit ε~(Xz) = c with c ∈ C.

In the case when gθ is reductive, the one-dimensional representation of gθ is parametrized
by the free parameter c ∈ C. This parameter corresponds to the free boundary parameter of
a quantum integrable model with a twisted Yangian as the underlying symmetry algebra. For
Lie algebras of type A, this parameter also appears in the solutions of the boundary intertwining
equation leading to a one-parameter family of the boundary S-matrices satisfying the reflection
equation [2]. Similar results can also be deduced for types B, C and D.

Theorem 5.6. Let g be a finite-dimensional simple complex Lie algebra of rank(g) ≥ 2. Fix
a (non-zero) invariant bilinear form on g and a basis {xi}. There is, up to isomorphism, a unique
homogeneous quantization Y(g, g)tw := U~(g[u2]) of (g[u2], τ), where τ is given by (4.6). It is
topologically generated by elements xi, G(xi) with the defining relations:

[xa, xb] = α c
ab xc, [xa,G(xb)] = α c

ab G(xc), G(λxa + µxb) = λG(xa) + µG(xb), (5.17)

[G(xa),G([xb, xc])] + [G(xb),G([xc, xa])] + [G(xc),G([xa, xb])]

= ~2Ψijk
abc{xi, xj ,G(xk)}+ ~4

(
Φijk
abc{xi, xj , xk}+ Φ

ijklm
abc {xi, xj , xk, xl, xm}

)
, (5.18)



14 S. Belliard and V. Regelskis

for all xa ∈ g and λ, µ ∈ C. Here

Ψijk
abc = α d

(ab α
k

c)r h
rij
d − α k

dr α
d

(ab h
rij
c) , (5.19)

Φ
ijklm
abc = 1

5

(
α i
rsα

d
(ab h

rjk
c) h

slm
d −Ψjkr

abch
ilm
r

)
, (5.20)

Φijk
abc = 1

9

(
α d
(ab W

ijk
c)d + 1

6Φ
(ix(yzj))
abc α r

xyα
k

rz −
(
Ψxjy
abch

kzr
y α s

zxα
i

rs + Ψxyz
abc h

rsk
z α i

rxα
j

ys

))
, (5.21)

with

W ijk
cd = α i

rsh
rxy
c

(
hszkd α j

xt α
t

yz + hsztd α k
xt α

j
yz

)
+
((
h
xyz
c hefkd − hxyzd hefkc

)
α t
yeα

i
zt α

j
xf + h

jxy
c h

kzr
d α s

xr

(
α t
zyα

i
st + α t

syα
i

zt )
)
, (5.22)

and

h bcda = φ bcd
a + 2ψ bcd

a , h
bcd
a = φ bcd

a − ψ bcd
a , ψ bcd

a = 1
12

(
α jd
a α bc

j + α jc
a α bd

j

)
,

φ bcd
a = 1

24c
−1
g

∑
π

(
α jk
a α

π(d)r
j α

π(b)s
k α

π(c)
sr

)
.

The coideal structure is given by the co-action ~ : Y(g, g)tw → Y(g)⊗ Y(g, g)tw defined by

~(xa) = xa ⊗ 1 + 1⊗ xa, (5.23)

~(G(xa)) = ϕ(G(xa))⊗ 1 + 1⊗ G(xa) + ~[J(xa)⊗ 1,Ωg]

+ 1
4~

2
(
[[xa ⊗ 1,Ωg],Ωg] + c−1g α bc

a [[xc ⊗ 1,Ωg], [xb ⊗ 1,Ωg]]
)
, (5.24)

where the embedding ϕ : Y(g, g)tw → Y(g) is

ϕ(G(xa)) = c−1g α bc
a [J(xc), J(xb)] + 1

4~[J(xa), Cg]. (5.25)

The grading on Y(g, g)tw is deg(xa) = 0, deg(~) = 1, deg(G(xa)) = 2. The co-unit is ε~(xi) =
ε~(G(xi)) = 0.

Remark 5.7. The co-action (5.24) can be equivalently written as

~(G(xa)) = ϕ(G(xa))⊗ 1 + 1⊗ G(xa)

+ ~[J(xa)⊗ 1,Ωg] + ~2
(
h bcda xb ⊗ {xc, xd}+ h

bcd
a {xc, xd} ⊗ xb

)
. (5.26)

Remark 5.8. The algebras Y(g, gθ)tw and Y(g, g)tw may be considered as flat deformations of the
twisted current algebras U(g[u]θ) and U(g[u2]), respectively. It is clear that Y(g, gθ)tw/~Y(g, gθ)tw

∼= U(g[u]θ) and Y(g, g)tw/~Y(g, g)tw ∼= U(g[u2]). The flatness of the deformations then follows
from the Poincaré–Birkhoff–Witt (PBW) theorem which is due the fact that both twisted Yan-
gians can be embedded to the Yangian Y~(g); the PBW theorem for Y~(g) was demonstrated
in [31].

The proof of Theorems 5.5 and 5.6 follows using the same arguments outlined in [13, Sec-
tion 21.1]. The uniqueness of co-actions (5.15) and (5.23), (5.24) is demonstrated in Sections 7.3
and 7.4; in particular, the co-action ~ is determined uniquely (up to an isomorphism discussed
in the paragraph below) by the coideal compatibility identities (5.1), (5.2) and the property (4)
of Definition 5.3. The map (5.16) is the MacKay twisted Yangian formula presented in [16].
The challenging task is to obtain the horrific relations (5.11), (5.12) and (5.18), which are quan-
tizations of (3.7), (3.8) and (3.10), respectively. A proof of the first two relations is given in
Section 7.5. Proving (5.18) is substantially more difficult. We have given an outline of a proof
in Section 7.6.
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Recall that the Yangian Y(g) has a one-parameter group of automorphisms κc, with c ∈ C,
given by κc(xa) = xa and κc(J(xa)) = J(xa) + ~cxa, which is compatible with both algebra
and Hopf algebra structure. An analogue of this automorphism for the twisted Yangians is
a one-parameter family of co-actions (κc ⊗ id) ◦ ~, which for Y(g, gθ)tw is equivalent to one-
parameter family of embeddings κc ◦ ϕ; the later does not apply to Y(g, g)tw due to the ~-order
term in (5.24).

Remark 5.9. We strongly believe that expressions in (5.19)–(5.21) could be further reduced to
a more elegant and compact form. We have succeeded to find such a form when g = sl3:

Ψijk
abc = 1

3A
ijk
(abc) + α d

(ab α
k

c)l φ
lij
d − α

k
dl α

d
(ab φ

lij
c) ,

Φijk
abc = −1

6A
ijk
abc, Φ

ijkln
abc = 1

36α
ir

(a α js
b A klm

c)rs .

6 Coideal subalgebras of the Yangian Y(sl3)

In this section we present three examples of twisted Yangians Y
(
g, gθ

)tw
when g = sl3 and

gθ = so3 or gθ = gl2 (both θ 6= id cases), or gθ = sl3 (θ = id case). For ease of notation we
will denote generators of the former two algebras by symbols h, e, f, k and H, E, F. We start by
recalling the Chevalley–Serre presentation of the sl3 Lie algebra and its Yangian.

6.1 The sl3 Lie algebra and the Yangian Y(sl3)

Lie algebra sl3 in the Chevalley–Serre presentation is generated by elements ei, fi, hi with
i = 1, 2 subject to the defining relations

[ei, fj ] = δijhi, [hi, ej ] = aijej , [hi, fj ] = −aijfj ,
[ei, [ei, ei±1]] = 0, [fi, [fi, fi±1]] = 0, (6.1)

where aii = 2 and a12 = −1 = a21 are the matrix elements of the Cartan matrix of sl3. The last
two relations are called the Serre relations.

Vector space basis of sl3 contains eight elements. In addition to the elements given above there
are two more root vectors that correspond to the non-simple roots of sl3, namely e3 = [e1, e2]
and f3 = [f2, f1]. The defining relations for the linear basis are obtained by dropping the Serre
relations in (6.1) and adding

[e1, e2] = e3, [e1, e3] = [e2, e3] = 0, [f1, f2] = −f3, [f1, f3] = [f2, f3] = 0,

[e1, f3] = −f2, [e2, f3] = f1, [f1, e3] = e2, [f2, e3] = −e1,
[hi, f3] = −f3, [hi, e3] = e3, [e3, f3] = h1 + h2. (6.2)

The quadratic Casimir operator is Cg =
∑

1≤i≤3(eifi + fiei) + 2
3

∑
1≤i≤j≤2 hihj and cg = 6.

Example 6.1. The Yangian Y(sl3) is the unital associative algebra with sixteen generators ei,
fi, hj , J(ei), J(fi), J(hj) with i = 1, 2, 3 and j = 1, 2. The defining relations (5.5), (5.6) are
given by (6.1), (6.2) and

[J(h1), J(h2)] = 3
4~

2({e3, f1, f2} − {e1, e2, f3}). (6.3)

The remaining relations defined by (5.6) are obtained by the adjoint action of degree-0 generators
on (6.3). (The same applies to all horrific relations in the examples given below.) The Hopf
algebra structure on Y(sl3) is given by (5.8), (5.9) with Ωg =

∑
1≤i≤3(ei ⊗ fi + fi ⊗ ei) +

1
3

∑
1≤i≤j≤2(hi ⊗ hj + hj ⊗ hi).
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6.2 Twisted Yangian Y(sl3, so3)
tw

Let involution θ be defined by

θ : e1 7→ −e2, f1 7→ −f2, h1 7→ h2.

The action of θ on the remaining elements of g = sl3 is deduced from the constraint θ2 = id.
The symmetric space basis is given by gθ(= h) = {h = h1 + h2, e = e1 − e2, f = f1 − f2}
and m = {h1 − h2, e1 + e2, f1 + f2, e3, f3}. The positive eigenspace of θ forms the orthogonal
subalgebra so3 ⊂ sl3. We denote the generators of this subalgebra by h, e, f. They generate the
degree-0 subalgebra of the twisted Yangian Y(sl3, so3)

tw. We denote the degree-1 generators by
H, E, F, E2, F2.

Example 6.2. The twisted Yangian Y(sl3, so3)
tw is the unital associative algebra with eight

generators h, e, f, H, E, F, E2, F2. The defining relations are the degree-0 Lie relations (of the
so3 Lie algebra)

[e, f] = h, [h, e] = e, [h, f] = −f,

degree-1 Lie relations

[h,E] = E, [h,E2] = 2E2, [H, e] = 3E, [e,E] = 2E2, [e,E2] = 0,

[h,F] = −F, [h,F2] = −2F2, [H, f] = −3F, [f,F] = −2F2, [f,F2] = 0,

[f,E2] = E, [e,F2] = −F, [e,F] = H, [E, f] = H, [H, h] = 0,

degree-2 horrific relation

[E,F]− [E2,F2] = 1
4~

2
(
{h, h, h} − 3{e, f, h}

)
,

degree-3 horrific relation

[[E,F],H] = 3
2~

2
(
{E2, f, f} − {F2, e, e}

)
+ 15

4 ~
2
(
{E, f, h} − {F, e, h}

)
.

The co-action is given by

~(x) = ϕ(x)⊗ 1 + 1⊗ x, ~(Y) = ϕ(Y)⊗ 1 + 1⊗ Y + ~[ϕ0(Y)⊗ 1,Ωh],

for all x ∈ {h, e, f} and Y ∈ {E,F,H,E2,F2} such that

ϕ(e) = e1 − e2, ϕ(f) = f1 − f2, ϕ(h) = h1 + h2,

ϕ0(E) = e1 + e2, ϕ0(F) = f1 + f2, ϕ0(H) = h1 − h2,
ϕ0(E2) = e3, ϕ0(F2) = f3,

and

ϕ(E) = J(e1) + J(e2) + 1
4~[e1 + e2, CX ], ϕ(E2) = J(e3) + 1

4~[e3, CX ],

ϕ(F) = J(f1) + J(f2) + 1
4~[f1 + f2, CX ], ϕ(F2) = J(f3) + 1

4~[f3, CX ],

ϕ(H) = J(h1)− J(h2) + 1
4~[h1 − h2, CX ].

Here

CX = 1
2

(
ef + fe + h2

)
∈ U(h), Ωh = 1

2(ϕ⊗ id) ◦
(
e⊗ f + f ⊗ e + h⊗ h

)
∈ g⊗ h.

The co-unit is ε(x) = ε(Y) = 0.
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6.3 Twisted Yangian Y(sl3, gl2)
tw

Let involution θ be defined by

θ : e1 7→ e1, f1 7→ f1, e2 7→ −e2, f2 7→ −f2, hi 7→ hi,

In this case gθ = {h = h1, k = 2h2 +h1, e = e1, f = f1} ∼ gl2 and m = {e2, f2, e3, f3}. We denote
the corresponding degree-1 generators by E2, F2, E3, F3.

Example 6.3. The twisted Yangian Y(sl3, gl2)
tw is the unital associative algebra with eight

generators h, e, f, k, E2, F2, E3, F3. The defining relations are the degree-0 Lie relations (of
the gl2 Lie algebra)4

[e, f] = h, [h, e] = 2e, [h, f] = −2f, [e, k] = [f, k] = [h, k] = 0,

degree-1 Lie relations

[h,E2] = −E2, [h,E3] = E3, [k,Ei] = 3Ei,

[h,F2] = F2, [h,F3] = −F3, [k,Fi] = −3Fi,

[e,E2] = E3, [e,F3] = −F2, [e,F2] = [e,E3] = 0,

[f,F2] = F3, [f,E3] = E2, [f,E2] = [f,F3] = 0,

degree-2 horrific relations

[E2,E3] = 0, [F2,F3] = 0,

degree-3 horrific relations

[E2, [E2,F3]] = 2~2{E2, f, k}, [F2, [E3,F2]] = −2~2{F2, f, k}.

The co-action given by, for x ∈ {h, e, f, k},

~(x) = ϕ(x)⊗ 1 + 1⊗ x, ϕ(h) = h1,

ϕ(k) = 2h2 + h1, ϕ(e) = e1, ϕ(f) = f1

and, for i = 1, 2,

~(Ei) = ϕ(Ei)⊗ 1 + 1⊗ Ei + ~[ei ⊗ 1,Ωh], ϕ(Ei) = J(ei) + 1
4~[ei, CX ],

~(Fi) = ϕ(Fi)⊗ 1 + 1⊗ Fi + ~[fi ⊗ 1,Ωh], ϕ(Fi) = J(fi) + 1
4~[fi, CX ].

Here

CX = ef + fe + 1
2h

2 + 1
6k

2 ∈ U(h),

Ωh = (ϕ⊗ id) ◦
(
e⊗ f + f ⊗ e + 1

2h⊗ h + 1
6k⊗ k

)
∈ g⊗ h.

The co-unit is ε(k) = c ∈ C, ε(x) = ε(Y) = 0 for all x ∈ {e, f, h} and Y ∈ {Ei,Fi} with i = 1, 2.

4The standard gl2 basis {eij}i,j=1,2 with the defining relations [eij , ekl] = δkjeil− δilekj is obtained by setting
e11 = −(h + k)/2, e22 = (h− k)/2, e12 = f and e21 = e.
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6.4 Twisted Yangian Y(sl3, sl3)
tw

In this case the involution is trivial, θ = id, hence gθ = sl3 and m = ∅.

Example 6.4. The twisted Yangian Y(sl3, sl3)
tw is the unital associative algebra with sixteen

generators ei, fi, hj , G(ei), G(fi), G(hj) with i = 1, 2, 3 and j = 1, 2, obeying the standard
sl3 Lie algebra relations of the Cartan–Chevalley presentation and the standard degree-2 Lie
relations (5.17) and the following degree-4 horrific relation

[G(h1),G(h2)] = ~2
(
{f1, f2,G(e3)} − {e1, e2,G(f3)})− 1

2~
4({f1, f2, e3} − {e1, e2, f3}

)
+ ~2

(
{e3, f2,G(f1)}+ {e3, f1,G(f2)} − {f3, e2,G(e1)} − {f3, e1,G(e2)}

)
+ 1

2~
2
(
{h1, f2,G(e2)} − {h1, e2,G(f2)} − {h2, f1,G(e1)}+ {h2, e1,G(f1)}

)
+ 1

4~
2
(
{h1, e1,G(f1)} − {h1, f1,G(e1)} − {h2, e2,G(f2)}+ {h2, f2,G(e2)}

+ {h1−h2, f3,G(e3)} − {h1−h2, e3,G(f3)}
)

+ 1
4~

4
(
{e1, e1, e2, f1, f3}+ {e1, e2, e2, f2, f3}+ {e1, e2, e3, f3, f3}

− {f1, f1, f2, e1, e3} − {f1, f2, f2, e2, e3} − {f1, f2, f3, e3, e3}
)

+ 1
12~

4
(
{e1, e2, h1, h1, f3}+ {e1, e2, h1, h2, f3}+ {e1, e2, h2, h2, f3}

− {f1, f2, h1, h1, e3} − {f1, f2, h1, h2, e3} − {f1, f2, h2, h2, e3}
)
.

The co-action given by (5.23), (5.24) with ϕ(G(xi)) = K(xi)+ 1
4~[J(xi), Cg] and with K(xi) =

c−1g α kj
i [J(xj), J(xk)], where5

K(e1) = 1
3([J(e3), J(f2)] + [J(h1), J(e1)]),

K(f1) = 1
3([J(f3), J(e2)]− [J(h1), J(f1)]),

K(e2) = 1
3([J(f1), J(e3)] + [J(h2), J(e2)]),

K(f2) = 1
3([J(e1), J(f3)]− [J(h2), J(f2)]),

K(e3) = 1
3([J(e1), J(e2)] + [J(h1 + h2), J(e3)]),

K(f3) = 1
3([J(f1), J(f2)]− [J(h1 + h2), J(f3)]),

K(h1) = 1
3

(
[J(e1), J(f1)] +

∑
1≤i≤3

[J(fi), J(ei)]
)
,

K(h2) = 1
3

(
[J(e2), J(f2)] +

∑
1≤i≤3

[J(fi), J(ei)]
)
.

The co-unit is ε(xi) = ε(G(xi)) = 0.

7 Proofs

In the remaining part of the paper we provide proofs omitted in the previous sections.

7.1 A proof of Proposition 3.1

We follow the arguments outlined in [13, Section 12.1] and fill in the gaps. Recall that given

a simple Lie algebra g the half-loop Lie algebra L+ is generated by the elements x
(k)
a with

k ≥ 0 and a = 1, . . . ,dim(g), and satisfying (3.1). Let L̃+ denote the algebra generated by

the elements xa and J(xa) satisfying (3.2)–(3.4). The map ϕ : L̃+ → L+ given by xa 7→ x
(0)
a ,

J(xa) 7→ x
(1)
a is an algebra homomorphism. It is a direct computation to check that the image

of (3.2)–(3.4) holds in L+.

5The non-zero structure constants α kj
i for sl3 in the Cartan–Chevalley basis can be read from here.
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To prove that ϕ is surjective we need to show that elements x
(0)
a and x

(1)
a generate the

whole L+. Indeed, since g is simple, we have [g, g] = g, or equivalently
[
L(1),L(1)

]
= L(2), where

L(k) = span
{
x
(k)
a

}
. By the same arguments we must have, for all k > 0, that

[
L(1),L(k)

]
=

L(k+1). This shows that L+ is generated by L(0) and L(1). Hence it only remains to show that ϕ
is injective.

We know that L+ =
⊕

k≥0L
(k), with dim

(
L(k)

)
= dim(g), as a vector space. We need to

show that an analogous statement holds for L̃+. Denote J (0)(xa) = xa, J
(1)(xa) = J(xa) and

define recursively

J (k)(xa) = c−1g αbca
[
J (1)(xc), J

(k−1)(xb)
]

for all k ≥ 1. (7.1)

We need to show that[
J (`)(xa), J

(k−`)(xb)
]

= α c
ab J

(k)(xc) for all ` ≤ k, (7.2)

so that L̃+ =
⊕

k≥0 L̃
(k) with L̃(k) = span{J (k)(xa)} and dim(L̃(k)) = dim(g). We first demon-

strate that[
J (k−`)(xa), J

(`)(xb)
]

=
[
J (k−`′)(xa), J

(`′)(xb)
]

for all ` < `′ ≤ k. (7.3)

We proceed by induction on k, the result being clear when k = 0, 1, by (3.2). For k = 2 there
are two inequivalent identities that need to be shown: with ` = 0, `′ = 2 and with ` = 0, `′ = 1.
The first identity follows by (7.1) and co-Jacobi identity:[

J (2)(xa), J
(0)(xb)

]
= c−1g α dc

a

[[
J (1)(xc), J

(1)(xd)
]
, J (0)(xb)

]
= c−1g α dc

a

(
α e
cb

[
J (1)(xe), J

(1)(xd)
]

+ α e
db

[
J (1)(xc), J

(1)(xe)
])

= α c
ab J

(2)(xc).

In a similar way we obtain that
[
J (0)(xa), J

(2)(xb)
]

= α c
ab J

(2)(xc) thus yielding the required
identity. To obtain the second identity we need to contract (3.3) with α cb

d giving

cg
[
J (1)(xa), J

(1)(xd)
]

+ α cb
d α

e
ca

[
J (1)(xb), J

(1)(xe)
]

+ α cb
d α

e
ab

[
J (1)(xc), J

(1)(xe)
]

= 0.

Now rename the indices b → c, c → e, e → b in the third term and use co-Jacobi identity
together with (7.1). This gives

[
J (1)(xa), J

(1)(xd)
]

= α c
adJ

(2)(xc) =
[
J (0)(xa), J

(2)(xd)
]
. Next,

assuming inductively (7.3), we have[
J (s)(xc),

[
J (r−`)(xa), J

(`)(xa)
]]

= α b
ca

([
J (r−`+s)(xb), J

(`)(xa)
]

+
[
J (r−`)(xa), J

(`+s)(xb)
])

= 0

for all ` ≤ r ≤ k, r − `+ s ≤ k and `+ s ≤ k giving[
J (r−`+s)(xb), J

(`)(xa)
]

=
[
J (`+s)(xb), J

(r−`)(xa)
]
.

Taking all the allowed `, r, s such that r + s ≤ k + 1 we obtain all the necessary identities thus
completing the induction.

We are now ready to prove (7.2). We use induction on k. The cases with k ≤ 2 are discussed
above. Thus, by induction hypothesis, we have[

J (1)(xd),
[
J (k−`)(xa), J

(`)(xb)
]]

= α c
ab

[
J (1)(xd), J

(k)(xc)
]
.
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Now contract the lhs with α ad
e , use (7.1), (7.3) and co-Jacobi identity:

α ad
e

[
J (1)(xd),

[
J (k−`)(xa), J

(`)(xb)
]]

= cg
[
J (k−`+1)(xe), J

(`)(xb)
]

+ α ad
e α f

db

[
J (k−`)(xa), J

(`+1)(xf )
]

= cg
[
J (k−`+1)(xe), J

(`)(xb)
]
− 1

2cgα
d

eb J
(k+1)(xd).

By doing the same for the rhs we get

α ad
e α c

ab

[
J (1)(xd), J

(k)(xc)
]

= 1
2cgα

a
eb J

(k+1)(xa)

yielding
[
J (k−`+1)(xe), J

(`)(xb)
]

= α d
eb J

(k+1)(xd), which completes the induction. Therefore

L̃+ =
⊕

L̃(k). By setting ϕ : J (k)(xa) 7→ x
(k)
a we obtain a bijection of vector spaces, hence

L̃+ ∼= L+.

7.2 A proof of Proposition 3.2

The idea behind the proof is very similar to that of the prove above. Recall that H+ is the

subalgebra of L+ generated by elements X
(2k)
α and Y

(2k+1)
p with k ≥ 0 and satisfying (3.5).

Let H̃+ denote the algebra generated by the elements Xα and B(Yp) satisfying (3.6)–(3.8). The

map ψ : H̃+ → H+ given by Xα 7→ X
(0)
α , B(Yp) 7→ Y

(1)
p is an algebra homomorphism. It is easy

to see that the image of (3.6) holds in H+. To see that the same is true for (3.7) and (3.8) we
additionally need to use (2.9) and (2.10).

To prove that ψ is surjective we need to show that elements X
(0)
α and Y

(1)
p , where Xα runs over

a basis for h and Yp runs over a basis for m, generate the whole H+. Indeed, since g = m ⊕ h
is simple, we must have [m,m] = h and [m, h] = m, or equivalently

[
H(1),H(1)

]
= H(2) and[

H(1),H(2)
]

= H(3), where H(2k) = span
{
X

(2k)
α

}
and H(2k+1) = span

{
Y

(2k+1)
p

}
. By the same

arguments we must have, for all k > 0, that
[
H(1),H(k)

]
= H(k+1). This shows that H+ is

generated by H(0) and H(1). It remains to show that ψ is injective.
We know that H+ =

⊕
k≥0H

(k), with dim
(
H(2k)

)
= dim(h) and dim

(
H(2k+1)

)
= dim(m), as

a vector space. We need to show that an analogous statement holds for H̃+. Let B(0)(Xα) = Xα,
B(1)(Yp) = B(Yp) and define recursively, for k ≥ 0,

B(2k+2)(Xα) = (c̄(α))
−1w qp

α

[
B(1)(Yp), B

(2k+1)(Yq)
]
, (7.4)

B(2k+1)(Yp) = 2c−1g

∑
α
g αqp

[
B(1)(Yq), B

(2k)(Xα)
]
. (7.5)

We need to show that, for all ` ≤ k,[
B(2k−2`)(Xα), B(2`)(Xβ)

]
= f γ

αβB
(2k)(Xγ), (7.6)[

B(2k−2`)(Xα), B(2`+1)(Yp)
]

= g q
αpB

(2k+1)(Yq), (7.7)[
B(2k−2`+1)(Yp), B

(2`+1)(Yq)
]

=
∑
α
w α
pq B

(2k+2)(Xα), (7.8)

so that H̃+ =
⊕

k≥0 H̃
(k), with H̃(2k) = span

{
B(2k)(Xα)

}
and H̃(2k+1) = span

{
B(2k+1)(Yp)

}
,

as a vector space.
We start by showing (7.6)–(7.8) for small k that follow from (3.6)–(3.8). First, notice

that (7.4) implies that (3.7) is equivalent to
[
B(1)(Yp), B

(1)(Yq)
]

=
∑

αw
α

pq B
(2)(Xα). Also,

notice that, by (2.8), (2.9) and (7.4),∑
α
w α
pq

[
B(2)(Xα), B(1)(Yr)

]
=
∑
α

(c̄(α))
−1w α

pq w
st
α

[[
B(1)(Yt), B

(1)(Ys)], B
(1)(Yr)

]
=
[[
B(1)(Yp), B

(1)(Yq)
]
, B(1)(Yr)

]
.



Drinfeld J Presentation of Twisted Yangians 21

Then, by (2.8), (2.10) and (7.4), (7.5),∑
α
w α
pq g

s
rαB

(3)(Ys) =
∑
α,β

2(cg)
−1w α

pq g
s

rαg
uβ
s

[
B(2)(Xβ), B(1)(Yu)

]
=
∑
α,β

2(κm)tu(cgc̄(β))
−1w α

pq g
s

rα w
β

st w
vx
β

[[
B(1)(Yx), B(1)(Yv)

]
, B(1)(Yu)

]
= 2c−1g (κm)tuw α

pq g
s

rα

[[
B(1)(Ys), B

(1)(Yt)
]
, B(1)(Yu)

]
.

By combining the expressions above with (3.8) we obtain
[
B(2)(Xα), B(1)(Yr)

]
= g s

αr B
(3)(Ys).

Consequently, we have that

w rp
β

[
B(1)(Yp),

[
B(2)(Xα), B(1)(Yr)

]]
= w rp

β g s
αr

[
B(1)(Yp), B

(3)(Ys)
]

giving

w rp
β g q

pα

[
B(3)(Yq), B

(1)(Yr)
]

+
∑
γ
w rp
β w γ

pr

[
B(2)(Xα), B(2)(Xγ)

]
= w pr

β g q
αp

[
B(1)(Yr), B

(3)(Yq)
]
.

Using (2.6), (2.9), (7.4), (7.5) and antisymmetry in α and β we obtain

c̄(β)
[
B(2)(Xα), B(2)(Xβ)

]
=
(
w pr
β g q

αp − w pr
α g q

βp

)[
B(1)(Yr), B

(3)(Yq)
]

= c̄(β)f
γ

αβB
(4)(Xγ),

which gives
[
B(2)(Xα), B(2)(Xβ)

]
= f γ

αβB
(4)(Xγ). Then, a direct computation using (7.4), (7.5)

yields
[
B(0)(Xα), B(2)(Xα)

]
= f γ

αβB
(2)(Xγ) and

[
B(0)(Xα), B(3)(Yr)

]
= g s

αr B
(3)(Ys) and finally[

B(0)(Xα), B(4)(Xβ)
]

= f γ
αβB

(4)(Xγ).

Next we show the following identities that will be necessary in proving (7.7) and (7.8):[
B(2k−2`)(Xα), B(2`+1)(Yp)

]
=
[
B(2k−2`′)(Xα), B(2`′+1)(Yp)

]
, (7.9)[

B(2k−2`+1)(Yp), B
(2`+1)(Yq)

]
=
[
B(2k−2`+1)(Yp), B

(2`+1)(Yq)
]
. (7.10)

We proceed by induction on k, the result being clear when k = 0 and when k = 1 for (7.9).
Assuming induction we have[

B(2s)(Xα),
[
B(2r−2`+1)(Yp), B

(2`+1)(Yp)
]]

= g q
αp

([
B(2r−2`+2s+1)(Yq), B

(2`+1)(Yp)
]

+
[
B(2r−2`+1)(Yp), B

(2`+2s+1)(Yq)
])

= 0

for all ` ≤ r ≤ k, r − `+ s ≤ k and `+ s ≤ k, therefore we must have[
B(2r+2s−2`+1)(Yq), B

(2`+1)(Yp)
]

=
[
B(2s+2`+1)(Yq), B

(2r−2`+1)(Yp)
]
.

Taking all the allowed `, r, s such that r + s ≤ k + 1 we obtain all the necessary identities thus
completing the induction. Then, by (7.4), it follows that, for all ` ≤ k,

B(2k+2)(Xα) = (c̄(α))
−1w qp

α

[
B(2`+1)(Yp), B

(2k−2`+1)(Yq)
]
. (7.11)

Relation (7.9) is proved similarly, using[
B(2s+1)(Yq),

[
B(2r−2`+1)(Yp), B

(2`+1)(Yp)
]]

=
∑
α
w α
qp

([
B(2r−2`+2s+2)(Xα), B(2`+1)(Yp)

]
+
[
B(2r−2`+1)(Yp), B

(2`+2s+2)(Xα)
])

= 0
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and implies that, for all ` ≤ k,

B(2k+1)(Yp) = 2c−1g

∑
α
g αqp

[
B(2`+1)(Yq), B

(2k−2`)(Xα)
]
. (7.12)

We also need to show that, for all ` < `′ ≤ k,

B(2k+2)(Xα) = (c(α))
−1f γβ

α

[
B(2k−2`)(Xβ), B(2`+2)(Xγ)

]
. (7.13)

Again, we proceed by induction on k. The base of induction was already shown above. Hence,
assuming inductively (7.13), we obtain

f γβ
α

[
B(2k−2`)(Xβ), B(2`+2)(Xγ)

]
= (c̄(γ))

−1f γβ
α w qp

γ

[
B(2k−2`)(Xβ),

[
B(2`′+1)(Yp), B

(2`−2`′+1)(Yq)
]]

= (c̄(γ))
−1f γβ

α w qp
γ

(
g r
βp

[
B(2k−2`+2`′+1)(Yr), B

(2`−2`′+1)(Yq)
]

+ g r
βq

[
B(2`′+1)(Yp), B

(2k−2`′+1)(Yr)
])

= (c̄(α))
−1c(α)w

rp
α

[
B(2`+1)(Yp), B

(2k−2`+1)(Yr)
]
.

Here we used (2.6), (2.9) and (7.12). By combining the expression above with (7.11) we complete
the induction.

We are now in position to prove (7.6)–(7.8) using induction on k. Notice that the base
of induction for each of (7.6)–(7.8) was already shown above. The induction step for (7.6) is
analogous to the one in Section 7.1, thus we do not repeat the proof. For (7.8), assuming
induction, we have[

B(2)(Xβ),
[
B(2k−2`+1)(Yp), B

(2`+1)(Yq)
]]

=
∑
α
w α
pq

[
B(2)(Xβ), B(2k+2)(Xα)

]
.

By (2.6), (2.10) and (7.12) we obtain∑
β

g pβr
[
B(2)(Xβ),

[
B(2k−2`+1)(Yp), B

(2`+1)(Yq)
]]

=
∑
β

g pβr g s
βp

[
B(2k−2`+3)(Ys), B

(2`+1)(Yq)
]

+
∑
β

g pβr g s
βq

[
B(2k−2`+1)(Yp), B

(2`+3)(Ys)
]

= 1
2cg
[
B(2k−2`+3)(Yr), B

(2`+1)(Yq)
]
− 1

4

∑
β

c̄(β)w
β

rq B(2k+4)(Xβ).

By (2.6) and (7.11) we get∑
α,β

g pβr w α
pq

[
B(2)(Xβ), B(2k+2)(Xα)

]
= 1

2

∑
α,β,γ

w γ
rq f

αβ
γ

[
B(2)(Xβ), B(2k+2)(Xα)

]
= 1

4

∑
γ
c(γ)w

γ
rq B(2k+4)(Xγ)

giving
[
B(2k−2`+3)(Yr), B

(2`+1)(Yq)
]

=
∑

β w
β

rq B(2k+4)(Xβ), which combined with (7.10) com-
pletes the induction.

Finally, for (7.7), assuming induction, we have∑
β

g βpq
[
B(1)(Yp),

[
B(2k−2`)(Xα), B(2`)(Xβ)

]]
=
∑
β

g βpq f γ
αβ

[
B(1)(Yp), B

(2k)(Xγ)
]
. (7.14)

Using (2.10) and (7.12) we compute∑
β

g βpq
[
B(1)(Yp),

[
B(2k−2`)(Xα), B(2`)(Xβ)

]]
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=
∑
β

g βpq g r
pα

[
B(2k−2`+1)(Yr), B

(2`)(Xβ)
]

+
∑
β

g βpq g r
pβ

[
B(2k−2`)(Xα), B(2`+1)(Yr)

]
=
∑
γ
g γrq g p

rα

[
B(2k−2`+1)(Yp), B

(2`)(Xγ)
]

+ 1
2cg
[
B(2k−2`)(Xα), B(2`+1)(Yq)

]
.

Subtracting the first term in the last equality above from the rhs of (7.14) and using (2.6),
(7.12) we get∑

γ

(∑
β

g βpq f γ
αβ − g

γr
q g p

rα

)[
B(1)(Yp), B

(2k)(Xγ)
]

=
∑
γ
g r
αq g

γp
r

[
B(1)(Yp), B

(2k)(Xγ)
]

= 1
2cgg

r
αq B

(2k+1)(Yr)

yielding
[
B(2k−2`)(Xα), B(2`+1)(Yq)

]
= g r

αq B
(2k+1)(Yr), which completes the induction.

Thus we have proved that H̃+ =
⊕

H̃(k). By setting ϕ : B(2k)(Xα) 7→ X
(2k)
α , B(2k+1)(Yp) 7→

Y
(2k+1)
p we obtain a bijection of vector spaces, hence H̃+ ∼= H+.

7.3 A proof of the uniqueness of the co-action of Y(g, gθ)tw

We need to show that the map ~ given by (5.15) together with (5.16) is the unique map
satisfying properties given by Definition 5.1 and property (4) of Definition 5.3. The latter
property defines the co-action up to the first order in ~,

~(x) = ϕ(x)⊗ 1 + 1⊗ x+ ~τ(x) + O
(
~2
)
,

with x ∈ Y(g, h)tw and ϕ the natural embedding Y(g, h)tw ↪→ Y(g).
For the degree-0 generators of H+ the Lie coideal structure is trivial and the minimal form

of the co-action is given by

~(Xα) = ϕ(Xα)⊗ 1 + 1⊗Xα. (7.15)

The coideal compatibility identities (5.1) and (5.2) and the requirement ϕ(Xα)|~→0 = Xα implies
that the natural inclusion for Xα is ϕ : Xα ∈ Y(g, h)tw 7→ Xα ∈ Y(g) and that (7.15) is indeed
the unique co-action satisfying the required properties.

For the degree-1 generators of H+ the Lie coideal structure is non-trivial. The minimal
co-action is

~(B(Yp)) = ϕ(B(Yp))⊗ 1 + 1⊗B(Yp) + ~[Yp ⊗ 1,Ωh]. (7.16)

As previously, the co-action must satisfy (5.1) and (5.2) and the requirement ϕ(B(Yp))|~→0 =
B(Yp). By (5.2) we have

∆~(ϕ(B(Yp))) = ϕ(B(Yp))⊗ 1 + 1⊗ ϕ(B(Yp)) + ~[Yq ⊗ 1,Ωh].

Consider the ansatz ϕ(B(Yp)) = J(Yp) + ~F (0)
p with some degree-0 element F

(0)
p ∈ Y(g). Recall

that ∆~(J(Yp)) = J(Yp)⊗ 1 + 1⊗ J(Yp) + 1
2~[Yp ⊗ 1,Ωg]. We rewrite the equality above as

∆~
(
J(Yp) + ~F (0)

p

)
−
((
J(Yp) + ~F (0)

p

)
⊗ 1 + 1⊗

(
J(Yp) + ~F (0)

p

))
= ~[Yp ⊗ 1,Ωh],

which equates to

∆~
(
F (0)
p

)
−
(
F (0)
p ⊗ 1 + 1⊗ F (0)

p

)
= 1

2 [Yp ⊗ 1, 2Ωh − Ωg]

= 1
2

∑
α

(
g αqp Yq ⊗Xα − g qαp Xα ⊗ Yq

)
= 1

2

∑
α
g αqp (Yq ⊗Xα +Xα ⊗ Yq).
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Thus we find that F
(0)
p = 1

4

∑
α g

αq
p (YqXα+XαYq) + cYp = 1

4 [Yq, CX ]− cYp for any c ∈ C, which
we can set to c = 0 without loss of generality (this is equivalent to the composition κ−c ◦ϕ with
the shift-automorphism κc : J(x) 7→ J(x) + ~cx of Y~(g) for any x ∈ g) giving

ϕ(B(Yp)) = J(Yp) + 1
4~[Yp, CX ],

or in other words is there is a one-parameter family of embeddings that are equivalent to each
other via the shift-automorphism of Y(g).

It remains to verify that the coideal compatibility identities (5.1) and (5.2) hold, which imply
that (7.16) is the unique co-action, and to show that ϕ is an algebra homomorphism, namely
ϕ([bi, bj ]) = [ϕ(bi), ϕ(bj)] and ~([bi, bj ]) = [ ~(bi), ~(bj)] for all bi, bj ∈ Y(g, h)tw, which follow
by a direct computation.

7.4 A proof of the uniqueness of the co-action of Y(g, g)tw

Similarly as before, we need to show that the map ~ given by (5.23) and (5.24) together
with (5.25) is the unique map satisfying properties given by Definition 5.1 and property (4)
of Definition 5.3. We first demonstrate an additional lemma that provides us with necessary
identities.

Lemma 7.1. The following identities hold in U(g) and U(g)⊗ U(g):

[[xi ⊗ 1,Ωg],Ωg] = 1
2(α jc

i α ab
j + α jb

i α ac
j )(xa ⊗ {xb, xc} − {xb, xc} ⊗ xa), (7.17)

α jk
i [[xk ⊗ 1,Ωg], [xj ⊗ 1,Ωg]] = α jk

i α cr
j α bs

k α a
sr (xa ⊗ {xb, xc}+ {xb, xc} ⊗ xa), (7.18)

6α jk
i α cr

j α bs
k α a

sr = α jk
i

∑
π
α
π(c)r
j α

π(b)s
k α

π(a)
sr + cg

(
α jc
i α ab

j + α jb
i α ac

j

)
. (7.19)

Proof. Recall that

[a⊗ b, c⊗ d] = [a, c]⊗ {b, d}+ {a, c} ⊗ [b, d].

For the first identity we have

[[xi ⊗ 1,Ωg],Ωg] = α bj
i ηkc[xj ⊗ xb, xk ⊗ xc]

= α bj
i ηkc(α a

jk xa ⊗ {xb, xc}+ α a
bc {xk, xj} ⊗ xa)

= α bj
i ηkc(α a

jk xa ⊗ {xb, xc} − α a
jk {xc, xb} ⊗ xa) by ren. k, j ↔ c, b

= α bj
i α ca

j (xa ⊗ {xb, xc} − {xc, xb} ⊗ xa).

For the second identity we have

α jk
i [[xk ⊗ 1,Ωg], [xj ⊗ 1,Ωg]] = α jk

i α br
k α cs

j [xr ⊗ xb, xs ⊗ xc]

= α jk
i α cs

j α br
k (α a

rs xa ⊗ {xb, xc}+ α a
bc {xs, xr} ⊗ xa)

= α jk
i α cs

j α br
k α a

rs (xa ⊗ {xb, xc}+ {xc, xb} ⊗ xa)

by renaming b, c↔ r, s. The third identity is obtained using the following auxiliary identities:

α jk
i α cr

j α bs
k α a

sr = α jk
i α cr

j α as
k α b

sr + 1
2cgα

jc
i α ab

j ,

α jk
i α cr

j α bs
k α a

sr = α jk
i α bs

k α ar
j α c

sr + 1
2cgα

jb
i α ac

j .

The first auxiliary identity follows by multiple application of the Jacobi identity. In particular,

α jk
i α cr

j

(
α bs
k α a

sr − α as
k α b

sr

)
= α jk

i α cr
j α s

rk α
ab
s = 1

2

(
α jk
i α cr

j + α jr
i α kc

j

)
α s
rk α

ab
s

= 1
2α

jc
i α kr

j α s
rk α

ab
s = 1

2cgα
jc
i α ab

j .
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The second auxiliary identity follows by the b ↔ c symmetry and renaming j, s ↔ k, r in the
first term on the right hand side. We also have that

α jk
i

∑
π
α
π(c)r
j α

π(b)s
k α

π(a)
sr = 2α jk

i

(
α cr
j α bs

k α a
sr + α cr

j α as
k α b

sr + α ar
j α bs

k α c
sr

)
.

Hence taking a double sum of the auxiliary identities and adding 2α cr
j α bs

k α a
sr to both sides of

the resulting equality reproduces (7.19) as required. �

The degree-0 generators have a trivial Lie coideal structure, hence, by the same arguments
as before,

~(xi) = ϕ(xi)⊗ 1 + 1⊗ xi,

and ϕ : xi ∈ Y(g, g)tw 7→ xi ∈ Y(g) is the natural inclusion. For the degree-2 generators we have

~(G(xi)) = ϕ(G(xi))⊗ 1 + 1⊗ G(xi) + ~[J(xi)⊗ 1,Ωg] + ~2W (0)
i ,

with W
(0)
i being a degree-0 element in Y(g)⊗ Y(g, g)tw, which can also be viewed as an element

in Y(g)⊗ Y(g) via the natural inclusion. Coinvariance (5.2) implies

∆~
(
ϕ(G(xi))

)
= ϕ(G(xi))⊗ 1 + 1⊗ ϕ(G(xi)) + ~[J(xi)⊗ 1,Ωg] + ~2W (0)

i . (7.20)

We also must have ϕ(G(xi))|~→0 = c−1g α jk
i [J(xk), J(xj)]. Let K

(2)
i = c−1g α jk

i [J(xk), J(xj)] and

choose the ansatz ϕ(G(xi)) = K
(2)
i + ~F (1)

i with some degree-1 element F
(1)
i ∈ Y(g). (We do not

need to consider degree-0 elements in the ansatz since all xi ∈ Y(g, g)tw.) We then have

∆~
(
K

(2)
i

)
= K

(2)
i ⊗ 1 + 1⊗K(2)

i

+ 1
2~[J(xi)⊗ 1− 1⊗ J(xi),Ωg] + 1

4c
−1
g ~2α jk

i [[xk ⊗ 1,Ωg], [xj ⊗ 1,Ωg]], (7.21)

which is obtained by making use of the following computation

α jk
i [J(xk)⊗ 1 + 1⊗ J(xk), [xj ,Ωg]] = α jk

i α ab
j α c

kb (J(xc)⊗ xa − xa ⊗ J(xc))

= 1
2α

jk
i (α ab

j α c
kb − α ab

k α c
jb )(J(xc)⊗ xa − xa ⊗ J(xc))

= 1
2α

jk
i α b

kj α
ac
b (J(xc)⊗ xa − xa ⊗ J(xc))

= 1
2cgα

ac
i (J(xc)⊗ xa − xa ⊗ J(xc)) = 1

2cg[J(xi)⊗ 1− 1⊗ J(xi),Ωg].

By comparing the terms linear in ~ in (7.20) and (7.21) we find F
(1)
i = 1

4 [J(xi), Cg]. Note that

∆~
(
F

(1)
i

)
= F

(1)
i ⊗ 1 + 1⊗ F (1)

i + 1
2 [J(xi)⊗ 1 + 1⊗ J(xi),Ωg] + 1

4~[[xi ⊗ 1,Ωg],Ωg].

Lastly, by comparing the terms quadratic in ~ in (7.20) and using the expressions for K
(2)
i

and F
(1)
i we find

4W
(0)
i = [[xi ⊗ 1,Ωg],Ωg] + c−1g α jk

i [[xk ⊗ 1,Ωg], [xj ⊗ 1,Ωg]].

as required.
The coideal co-associativity identity (5.1) in this case is not that straightforward, thus we

demonstrate it explicitly. We need to show that the expression below equates to zero:(
(∆~ ⊗ id) ◦ ~ − (id⊗ ~) ◦ ~

)
(G(xi))
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=
(
∆~(ϕ(G(xi)))−

(
ϕ(G(xi))⊗ 1 + 1⊗ ϕ(G(xi)) + ~[J(xi)⊗ 1,Ωg]

))
⊗ 1

+ ~2
(
(∆~ ⊗ id)

(
W

(0)
i

)
− (id⊗ ~)

(
W

(0)
i

)
− 1⊗W (0)

i + 1
2α

jk
i ([xk ⊗ 1,Ωg])⊗ xj

)
.

Using the fact ϕ(xi) = xi the relation above gives a constraint

(∆~ ⊗ id)
(
W

(0)
i

)
− (id⊗ ~)

(
W

(0)
i

)
+W

(0)
i ⊗ 1− 1⊗W (0)

i

+ 1
2α

jk
i ([xk ⊗ 1,Ωg])⊗ xj = 0. (7.22)

By Lemma (7.1) the explicit form of W
(0)
i is equal to

W
(0)
i = 1

8

(
α jc
i α ab

j + α jb
i α ac

j

)
(xa ⊗ {xb, xc} − {xb, xc} ⊗ xa)

+ 1
24

(
c−1g α jk

i

∑
π
α
π(c)r
j α

π(b)s
k α

π(a)
sr + α jc

i α ab
j + α jb

i α ac
j

)
× (xa ⊗ {xb, xc}+ {xb, xc} ⊗ xa)

= 1
12

(
α jc
i α ab

j + α jb
i α ac

j

)
(2xa ⊗ {xb, xc} − {xb, xc} ⊗ xa)

+ 1
24c
−1
g α jk

i

∑
π
α
π(c)r
j α

π(b)s
k α

π(a)
sr (xa ⊗ {xb, xc}+ {xb, xc} ⊗ xa). (7.23)

Denote W
(0)
i = h abci xa ⊗ {xb, xc}+ h

abc
i {xb, xc} ⊗ xa. Then (7.22) is equivalent to

4h
abc
i xc ⊗ xb ⊗ xa − 4h abci xa ⊗ xb ⊗ xc + α jc

i α ab
j xa ⊗ xb ⊗ xc = 0,

giving 4h
cba
i − 4h abci + α jc

i α ab
j = 0. Using (7.23) we find

4h
cba
i − 4h abci + α jc

i α ab
j = −1

3

(
α ja
i α cb

j + α jb
i α ca

j

)
− 2

3

(
α jc
i α ab

j + α jb
i α ac

j

)
+ α jc

i α ab
j

= −1
3

(
α ja
i α cb

j + α jb
i α ac

j

)
+ 1

3α
jc
i α ab

j = 0

by the co-Jacobi identity. By reversing the computations above and using (5.2) one can deduce
that co-action ~ is the unique map satisfying the required properties up to the shift (κc⊗id)◦ ~,
i.e., there exists a one-parameter family of co-actions that are equivalent to each other via the
shift-automorphism κc of Y(g).

It remains to verify that the map ϕ is an algebra homomorphism, ϕ([bi, bj ]) = [ϕ(bi), ϕ(bj)]
and ~([bi, bj ]) = [ ~(bi), ~(bj)] for all bi, bj ∈ Y(g, g)tw, which follow by a lengthy but direct
computation.

7.5 A proof of relations (5.11) and (5.12)

Recall the horrific degree-2 and degree-3 relations of the twisted Yangian Y
(
g, gθ

)tw
from the

Theorem 5.5:

[B(Yp),B(Yq)] +
∑
α

(c̄(α))
−1w α

pq w
rs
α [B(Yr),B(Ys)] = ~2

∑
λ,µ,ν

Λλµνpq {Xλ, Xµ, Xν},

[[B(Yp),B(Yq)],B(Yr)] + 2c−1g

∑
α

(κm)tuw α
pq g

s
rα [[B(Ys),B(Yt)],B(Yu)]

= ~2
∑
λ,µ,u

Υλµu
pqr {Xλ, Xµ,B(Yu)},

where, by (5.13) and (5.14),

Λλµνpq = 1
3

(
gµtpg

λu
q +

∑
α

(c̄(α))
−1w α

pq w
rs
α gµtrgλus

)
w ν
tu ,
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Υλµu
pqr = 1

4

∑
α

(
w α
st g

λs
p g µtq g u

αr +
∑
β

w α
pq f

λβ
α g µsr g u

βs

)
+ 1

2c
−1
g

∑
α,γ

(κm)vxw γ
pq g

y
rγ

(
w α
st g

λs
y g µtv g u

αx +
∑
β

w α
yv f

λβ
α g µsx g u

βs

)
.

The coideal structure is given by the co-action ~ : Y
(
g, gθ

)tw → Y(g) ⊗ Y
(
g, gθ

)tw
defined

in (5.15):

~(Xα) = Xα ⊗ 1 + 1⊗Xα, ~(B(Yp)) = ϕ(B(Yp))⊗ 1 + 1⊗B(Yp) + ~[Yp ⊗ 1,ΩX ],

where, by (5.16), ϕ(B(Yp)) = J(Yp) + 1
4~[Yp, CX ].

Denote the horrific degree-2 and degree-3 relations as

H(2)
pq = ~2Λλµνpq {Xλ, Xµ, Xν} and H(3)

pqr = ~2Υλµu
pqr {Xλ, Xµ,B(Yu)},

respectively. We need to show that co-action ~ extends to a homomorphism of algebras
Y
(
g, gθ

)tw → Y(g) ⊗ Y
(
g, gθ

)tw
. This can be checked by a direct computation. We will demon-

strate this in several steps.
Degree-2. Set Bpq = [B(Yp),B(Yq)]. We have that

~(Bpq) = ϕ(Bpq)⊗ 1 + 1⊗Bpq + ~[ϕ(B(Yp))⊗ 1 + 1⊗B(Yp), [Yq ⊗ 1,ΩX ]]

+ ~[[Yp ⊗ 1,ΩX ], ϕ(B(Yq))⊗ 1 + 1⊗B(Yq)] + ~2[[Yp ⊗ 1,ΩX ], [Yq ⊗ 1,ΩX ]].

The ~-order terms in the right hand side of the equality above equate to

~
[
J(Yp) + 1

4~
∑
α
g αrp (YrXα +XαYr)⊗ 1 + 1⊗B(Yp),

∑
α
g αrq Yr ⊗Xα

]
− (p↔ q)

= ~
∑
α,β

g αrq w β
pr J(Xβ)⊗Xα + ~

∑
µ
g µtq g s

pµYt ⊗B(Ys)

+ 1
2~

2∑
α,β

g αrp g βsq
(∑

γ
w γ
rs {Xγ , Xα}+ g t

αs {Yr, Yt}
)
⊗Xβ − (p↔ q),

where (p ↔ q) denote all the terms with indices p and q interchanged. In a similar way the
~2-order term equates to

~2
∑
α,β

g αrp g βsq [Yr ⊗Xα, Ys ⊗Xβ]

= 1
2~

2 ∑
α,β,γ

(
g αsp g βtq − g αsq g βtp

)(
w γ
st Xγ ⊗ {Xβ, Xα}+ f γ

αβ {Ys, Yt} ⊗Xγ

)
.

Using mixed Jacobi identities we write∑
α,β

(
g αrq w β

pr − g αrp w β
qr

)
J(Xβ)⊗Xα =

∑
α,β,µ

w µ
pq f

αβ
µ J(Xβ)⊗Xα,∑

µ

(
g µtq g s

pµ − g
µt
p g s

qµ

)
Yt ⊗B(Ys) =

∑
α,µ

w µ
pq w st

µ Yt ⊗B(Ys)

and ∑
α,β

(
g t
αs

(
g αrp g βsq − g αrq g βsp

)
{Yr, Yt} ⊗Xβ +

∑
γ
f γ
αβ

(
g αrp g βtq − g αrq g βtp

)
{Yr, Yt} ⊗Xγ

)
=
∑
α,β

(
g αrp

(
g t
αs g

βs
q +

∑
γ
f β
αγ g

γt
q

)
− g αrq

(
g t
αs g

βs
p +

∑
γ
f β
αγ g

γt
p

))
{Yr, Yt} ⊗Xβ

=
∑
α,β

(
g αrp g tβs g s

qα − g αrq g tβs g s
pα

)
{Yr, Yt} ⊗Xβ =

∑
α,µ

w µ
pq w rs

µ g tαs {Yr, Yt} ⊗Xα.
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Using the identity∑
α,β,γ

(
w γ
rs

(
g αrp g βsq − g αrq g βsp

)
{Xγ , Xα} ⊗Xβ + w γ

st

(
g αsp g βtq − g αsq g βtp

)
Xγ ⊗ {Xβ, Xα}

)
=
∑
α,β,γ

w γ
st

(
g αsp g βtq + g βsp g αtq

)
({Xγ , Xα} ⊗Xβ +Xγ ⊗ {Xβ, Xα})

and combing all the expressions above we arrive to the following result,

~(Bpq) = ϕ(Bpq)⊗ 1 + 1⊗Bpq

+ ~
∑
µ
w µ
pq

(
w st
µ Yt ⊗B(Ys) +

∑
α,β

f αβ
µ J(Xβ)⊗Xα + 1

2~
∑
α
w su
µ g tαu {Ys, Yt} ⊗Xα

)
+ 1

2~
2 ∑
α,β,γ

w γ
st

(
g αsp g βtq + g βsp g αtq

)
({Xγ , Xα} ⊗Xβ +Xγ ⊗ {Xβ, Xα}) (7.24)

and, by similar computations,

ϕ(Bpq) = [J(Yp), J(Yq)] + 1
2~
∑
µ
w µ
pq

(
w st
µ {J(Ys), Yt}+

∑
α,β

f αβ
µ {J(Xβ), Xα}

)
+ 1

4~
2g αsp g βtq [{Ys, Xα}, {Yt, Xβ}].

In a similar way as it was done in the proof of Lemma 7.1, the last line of (7.24) can be split as

1
6~

2 ∑
α,β,γ,λ,µ

w µ
pq f

λγ
µ f βα

λ ({Xγ , Xβ} ⊗Xα − 2Xα ⊗ {Xβ, Xγ})

+ ~2
∑
α,β,γ

g αsp g βtq w γ
st (〈Xα, Xβ, Xγ〉1 + 〈Xα, Xβ, Xγ〉2). (7.25)

Here we have used the same notation as in (5.3). The terms in the second line of (7.24) and in

the first line of (7.25) do not contribute to ~
(
H

(2)
pq

)
, since w µ

pq +
∑

α(c̄(α))
−1w α

pq w
rs
α w µ

rs = 0.
What remains are the terms in the second line of (7.25) giving

~
(
H(2)
pq

)
= ϕ

(
H(2)
pq

)
⊗ 1 + 1⊗H(2)

pq + ~2
∑
α,β,γ

(
g αsp g βtq +

∑
λ

(c̄(λ))
−1w λ

pq w
us
λ g αsu g βts

)
× w γ

st (〈Xα, Xβ, Xγ〉1 + 〈Xα, Xβ, Xγ〉2). (7.26)

By (5.4) we have

~({Xα, Xβ, Xγ})−
(
{Xα, Xβ, Xγ} ⊗ 1 + 1⊗ {Xα, Xβ, Xγ}

)
= 3
(
〈Xα, Xβ, Xγ〉1 + 〈Xα, Xβ, Xγ〉2

)
. (7.27)

Comparing (7.26) with (7.27) gives (5.13), as required.
Degree-3. Set Bpqr = [Bpq,B(Yr)]. We write

~(Bpqr) = ϕ(Bpqr)⊗ 1 + 1⊗Bpqr + ~B(2)
pqr + ~2B(1)

pqr + ~3B(0)
pqr, (7.28)

where B
(i)
pqr denote elements of degree-i. By consistency, the elements of degree-2 in ~

(
H

(3)
pqr

)
must vanish altogether, since they are of a linear order in ~. This can be shown explicitly. We
have

B(2)
pqr =

∑
α

[[J(Yp), J(Yq)]⊗ 1 + 1⊗ [B(Yp),B(Yq)], g
αt
r Yt ⊗Xα]

+
∑
µ
w µ
pq

[
w st
µ Yt ⊗B(Ys) +

∑
α,β

f αβ
µ J(Xβ)⊗Xα, J(Xr)⊗ 1 + 1⊗B(Yr)

]
.
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Denote this expression as B
(2)
pqr = B

(2,0)
pqr + B

(0,2)
pqr + B

(1,1)
pqr , where B

(i,j)
pqr represents elements of

degree-i in the left tensor factor and of degree-j in the right tensor factor. Then

B(2,0)
pqr =

∑
α,β

g αtr
(
w β
pt [J(Xβ), J(Yq)] + w β

qt [J(Yp), J(Xβ)]
)
⊗Xα

+
∑
α,β,µ

w µ
pq f

αβ
µ [J(Xβ), J(Yr)]⊗Xα

= 2
∑
α,β,γ

(
g αtr (w β

pt g
s

βq − w
β

qt g
s

βp ) +
∑
µ
w µ
pq f

αβ
µ g s

βr

)
c−1g g γus [J(Yu), J(Xγ)]⊗Xα

+ 1
2~

2c−1g

∑
α,β,γ

(
g αtr (w β

pt g
γu
q − w β

qt g
γu
p ) +

∑
µ
w µ
pq f

αβ
µ gγur

)
×
∑
ijk

A
ijk
βuγ{xi, xj , xk} ⊗Xα

= 2
∑
α,β,γ

w β
pq g t

βr g
αs
t g γus c−1g [J(Yu), J(Xγ)]⊗Xα + O1

(
~2
)
, (7.29)

where O1(~2) is a short–hand notation for the terms in the third line, and we have used the
mixed Jacobi identities and the Drinfeld terrific relation (5.6) in the form

[J(Xβ), J(Xq)] + 2c−1g g s
βq g

γu
s [J(Xγ), J(Yu)] = 1

2~
2c−1g

∑
γ

∑
ijk

g γuq βijkβuγ{xi, xj , xk}.

Here the sum
∑

i xi spans all of the symmetric space basis, xi = {Yp, Xα}; the same applies
to xj and xk. In a similar way we find

B(0,2)
pqr =

∑
α
g αtr Yt ⊗

(
g u
pα [B(Yu),B(Yq)] + g u

qα [B(Yp),B(Yu)]
)

+
∑
α
w α
pq w

st
α Yt ⊗ [B(Ys),B(Xr)]

=
∑
α,β

(
g αtr (g u

pαw
β

uq − g u
qα w

β
up ) + w α

pq w
st
α w

β
sr

)
(c̄(β))

−1w vs
β Yt ⊗ [B(Ys),B(Yv)]

+ ~2
∑

α,λ,µ,ν

(
g αtr (g u

pα Λλµνuq − g u
qα Λλµνup ) + w α

pq w
st
α Λλµνsr

)
Yt ⊗ {Xλ, Xµ, Xν}

=
∑
α,β

w α
pq g

t
αr g

βt
t w vs

β (c̄(β))
−1Yt ⊗ [B(Ys),B(Yv)] + O2

(
~2
)
, (7.30)

where we have used the mixed Jacobi identities and (5.11). The notation for O2(~2) is the same
as before. The remaining elements give

B(1,1)
pqr =

∑
µ,β

w µ
pq

(
w st
µ w

β
tr +

∑
α
f αβ
µ g s

αr

)
J(Xβ)⊗B(Ys)

=
∑
α,β

w α
pq g

t
αr g

sβ
t J(Xβ)⊗B(Ys). (7.31)

Now it is easy to check that leading terms in (7.29)–(7.31) do not contribute to ~
(
H

(3)
pqr

)
, since

(by (2.10))∑
β

w β
pq g t

βr + 2c−1g

∑
α,β

(κm)uvw α
pq g

s
rα w

β
su g t

βv = 0. (7.32)

Next step is to consider the degree-1 term in (7.28). We write B
(1)
pqr = B

(1,0)
pqr + B

(0,1)
pqr . Using

(7.24), (7.25) and (5.16) we find

B(1,0)
pqr = 1

2

∑
α,µ

w µ
pq

(∑
β,γ

f αβ
µ g γsr [J(Xβ)⊗Xα, 2Ys ⊗Xγ + {Ys, Xγ} ⊗ 1]
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+ w su
µ g tαu [{Ys, Yt}, J(Yr)]⊗Xα

)
+ 1

2

∑
γ,µ
w µ
pq g

γu
r

(
w st
µ [{J(Ys), Yt}, Yu] +

∑
α,β

f αβ
µ [{J(Xβ), Xα}, Yu]

)
⊗Xγ

+ 1
2

∑
α,β,γ

w γ
st

(
g αsp g βtq + g βsp g αtq

)
[{Xγ , Xα} ⊗Xβ +Xγ ⊗ {Xβ, Xα}, J(Yr)⊗ 1]

= 1
2

∑
γ,λ,µ

w µ
pq

(∑
α,β

g βsr
(
2f αλ
µ f γ

αβ + f γα
µ f λ

αβ

)
+ w λ

tr

(
w tu
µ g sγu + w su

µ g tγu
)

+ g γur
(
w ts
µ w

λ
tu +

∑
α
f αλ
µ g s

αu

))
{Ys, J(Xλ)} ⊗Xγ

+ 1
2

∑
α,β,γ,µ

(
w µ
pq f

αβ
µ g γsr g u

βs + w β
st g

αs
p g γtq g u

βr

)
× (2J(Yu)⊗ {Xα, Xγ}+ {Xα, J(Yu)} ⊗Xγ + {Xγ , J(Yu)} ⊗Xα)

+ 1
2

∑
α,β,γ

w γ
ts

(
w β
pq w ut

β g αsr + g u
rβ

(
g βsp g αtq + g αsp g βtq

))
{Xγ , J(Yu)} ⊗Xα. (7.33)

The first sum in the last equality can be simplified using the mixed Jacobi identities, giving

1
2

∑
γ,λ,µ

w µ
pq g t

µr

(
g uλt gγsu +

∑
α
g αst fγλα

)
{Ys, J(Xλ)} ⊗Xγ .

This component does not contribute to ~
(
H

(3)
pqr

)
due to (7.32). The second degree-1 element,

B
(0,1)
pqr , is

B(0,1)
pqr = 1

2

∑
α,β

w β
pq

(
w st
β g

αu
r [Yt ⊗B(Ys), 2Yu ⊗Xα + {Yu, Xα} ⊗ 1]

+ w su
β g tαu [{Ys, Yt} ⊗ [Xα,B(Yr)]

)
+ 1

2

∑
α,β,γ

w γ
st

(
g αsp g βtq + g βsp g αtq

)
[{Xγ , Xα} ⊗Xβ +Xγ ⊗ {Xβ, Xα}, 1⊗B(Yr)]

= 1
2

∑
α,β

w β
pq

(
2w st

β g
αu
r g v

sα + w vs
β g αur g t

sα + w ts
β g

uα
s g v

αr

)
{Yt, Yu} ⊗B(Yv)

+
∑
α,β,γ

w γ
ts

(
w β
pq w ut

β g αsr + g u
rβ

(
g αsp g βtq + g βsp g αtq

))
×
(
Xγ ⊗ {Xα,B(Yu)}+ 1

2{Xα, Xγ} ⊗B(Yu)
)
. (7.34)

The first sum in the last equality above can be simplified to 1
2

∑
α,β w

β
pq g s

rβ g
αt
s w uv

α {Yt, Yu} ⊗
B(Yv), and does contribute to ~

(
H

(3)
pqr

)
due to (7.32). Set

Aαγupqr = 1
2

∑
β,µ

(
w µ
pq f

αβ
µ g γsr g u

βs + w β
st g

αs
p g γtq g u

βr + (α↔ γ)
)
,

Bαγu
pqr = 1

2

∑
β

w γ
ts

(
w β
pq w ut

β g αsr + g u
rβ

(
g αsp g βtq + g βsp g αtq

))
.

Using the mixed Jacobi identities (2.6) we find that

Υαγu
pqr =

(
Aαγupqr + 2c−1g

∑
µ

(κm)tuxw µ
pq g s

rµA
αγu
stu = Bαγu

pqr + 2c−1g

∑
µ

(κm)tuw µ
pq g s

rµB
αγu
stu

)
satisfying Υαγu

pqr = Υγαu
pqr . The contribution of the remaining sums in (7.33) and (7.34) to

~
(
H

(3)
pqr

)
is∑

α,γ
Υαγu
pqr

(
J(Yu)⊗ {Xα, Xγ}+ 2{Xα, J(Yu)} ⊗Xγ

+ 2Xγ ⊗ {Xα,B(Yu)}+ {Xα, Xγ} ⊗B(Yu)
)
.

(7.35)
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Using (5.4) and (5.3) we find that

~({Xα, Xγ ,B(Yu)})− (ϕ({Xα, Xγ ,B(Yu)})⊗ 1 + 1⊗ {Xα, Xγ ,B(Yu)}+ O3(~))

= J(Yu)⊗ {Xα, Xγ}+ {Xα, Xγ} ⊗B(Yu)

+ ({J(Yu), Xα} ⊗Xγ +Xγ ⊗ {Xα,B(Yu)}+ (α↔ γ)),

where O3(~) denotes linear in ~ terms that appear due to (5.16). Comparing the relation above
with (7.35) and using symmetry Υαγu

pqr = Υγαu
pqr gives (5.14), as required. The remaining elements

in ~
(
H

(3)
pqr

)
, that we have denoted by ~3B(0)

pqr, are cubic in ~ and, by summing with ~O1(~2)
of (7.29) and ~O2(~2) of (7.30), and repeating similar steps as we did above, give precisely the
element ~2O3(~), thus the relations (5.11) and (5.12) are compatible with the co-action (5.15).

7.6 An outline of a proof of relations (5.18)–(5.22)

The following lemma, which follows by a direct computation, will be necessary in what follows
below.

Lemma 7.2. In any associative algebra generated by elements xa(b,c,...) over C the following
identities hold:

{xi, {xj , xk}} = {xi, xj , xk}+ 1
12 [x(j , [xk), xi]],

{xj , xk, xl, xm} = 1
3{xj , x(k, {xl, xm)}} − 1

36 [[xj , x(k], {xl, xm)}],
{1⊗ xi, 1⊗ xj , xa ⊗ {xb, xc}} = xa ⊗ {xi, xj , {xb, xc}},
{xi ⊗ 1, 1⊗ xj , xa ⊗ {xb, xc}} = {xi, xa} ⊗ {xj , {xb, xc}} − 1

12 [xa, xi]⊗ [xj , {xb, xc}],
{xi ⊗ 1, 1⊗ xj , {xb, xc} ⊗ xa} = {xi, {xb, xc}} ⊗ {xj , xa} − 1

12 [{xb, xc}, xi]⊗ [xj , xa].

Recall the horrific degree-4 relation (5.18) of the twisted Yangian Y(g, g)tw in Theorem 5.6:

[G(xa),G([xb, xc])] + [G(xb),G([xc, xa])] + [G(xc),G([xa, xb])] = ~2Ψijk
abc{xi, xj ,G(xk)}

+ ~4(Φijk
abc{xi, xj , xk}+ Φ

ijklm
abc {xi, xj , xk, xl, xm}),

where, by (5.19)–(5.21),

Ψijk
abc = α d

(ab α
k

c)r h
rij
d − α k

dr α
d

(ab h
rij
c) , Φ

ijklm
abc = 1

5

(
α i
rsα

d
(ab h

rjk
c) h

slm
d −Ψjkr

abch
ilm
r

)
,

Φijk
abc = 1

9

(
α d
(ab W

ijk
c)d + 1

6Φ
(ix(yzj))
abc α r

xyα
k

rz −
(
Ψxjy
abch

kzr
y α s

zxα
i

rs + Ψxyz
abc h

rsk
z α i

rxα
j

ys

))
.

with

W ijk
cd = α i

rsh
rxy
c

(
hszkd α j

xt α
t

yz + hsztd α k
xt α

j
yz

)
+
((
h
xyz
c hefkd − hxyzd hefkc

)
α t
yeα

i
zt α

j
xf + h

jxy
c h

kzr
d α s

xr

(
α t
zyα

i
st + α t

syα
i

zt )
)

and

h bcda = φ bcd
a + 2ψ bcd

a , h
bcd
a = φ bcd

a − ψ bcd
a , ψ bcd

a = 1
12

(
α jd
a α bc

j + α jc
a α bd

j

)
,

φ bcd
a = 1

24c
−1
g

∑
π

(
α jk
a α

π(d)r
j α

π(b)s
k α

π(c)
sr

)
.

Denote the degree-4 relation as

H
(4)
abc = ~2Ψijk

abc{xi, xj ,G(xk)}+ ~4
(
Φijk
abc{xi, xj , xk}+ Φ

ijklm
abc {xi, xj , xk, xl, xm}

)
. (7.36)
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The coefficients Ψijk
abc, Φijk

abc, Φ
ijklm
abc ∈ C must be designed to make ~ extend to a homomorphism

of algebras Y(g, g)tw → Y(g) ⊗ Y(g, g)tw. We will find these coefficients by acting with ~
on (7.36) and equating the numeric factors of some elements on both sides of the resulting
expression. These elements are

{xi, xj} ⊗ G(xk), xi ⊗ {xj , xk}, xi ⊗ {xj , xk, {xl, xm}}.

All the remaining elements will be referred as the unwanted terms (UWT). Denote Gad =

[G(xa),G(xd)]. Then H
(4)
abc = α(ab

dGc)d. Using (5.24) we write

~(Gcd) = ϕ(Gcd)⊗ 1 + 1⊗Gcd + ~G(3)
cd + ~2G(2)

cd + ~3G(1)
cd + ~4G(0)

cd ,

where G
(i)
cd denote elements of degree-i and can be computed explicitly using (5.25) and (5.26).

For our purpose we need to consider certain elements of G
(2)
cd and G

(0)
cd only. For G

(2)
cd we have

G
(2)
cd = (α k

cr h
rij
d − α k

dr h
rij
c ){xi, xj} ⊗ G(xk) + UWT, (7.37)

and for G
(0)
cd we find

G
(0)
cd = α i

rsh
rjk
c hslmd xi ⊗ {{xj , xk}, {xl, xm}}+ h

jln
c h

krs
d [{xl, xn}, {xr, xs}]⊗ {xj , xk}

+
(
h
trs
c hlmnd − htrsd hlmnc

)
{xl, {xr, xs}} ⊗ [xt, {xm, xn}] + UWT.

Using Lemma 7.2 and symmetries hrjkc = hrkjc , h
rjk
c = h

rkj
c we reduce the expression above to

G
(0)
cd = α i

rsh
rjk
c hslmd xi ⊗ {xj , xk, {xl, xm}}+ 1

3W
ijk
cd xi ⊗ {xj , xk}+ UWT, (7.38)

where

W ijk
cd = α i

rsh
rxy
c

(
hszkd α j

xt α
t

yz + hsztd α k
xt α

j
yz

)
+
((
h
xyz
c hefkd − hxyzd hefkc

)
α t
yeα

i
zt α

j
xf + h

jxy
c h

kzr
d α s

xr

(
α t
zyα

i
st + α t

syα
i

zt )
)
.

Next step is to find the corresponding elements in the rhs of ~
(
H

(4)
abc

)
. Using (5.26), (5.4) and

Lemma 7.2 we obtain

~({xi, xj ,G(xk)}) = {xi, xj} ⊗ G(xk) + ~2habck xa ⊗ {xi, xj , {xb, xc}}

+ 1
6~

2h
abc
k

(
α r
bi α

s
cr xs ⊗ {xj , xa}+ α r

bj α
s

cr xs ⊗ {xi, xa}
)

− 1
6~

2habck (α r
ai α

s
jb + α r

aj α
s

ib )xr ⊗ {xs, xc}+ UWT,

~({xi, xj , xk}) = x(i ⊗ {xj , xk)}+ UWT,

~({xi, xj , xk, xl, xm}) = 1
3x(i ⊗ {xj , x(k, {xl, xm))}}
− 1

36x(i ⊗ [[xj , x(k], {xl, xm))}] + UWT.

This gives

~
(
H

(4)
abc

)
= ~2Ψijk

abc{xi, xj} ⊗ G(xk) + ~4
(
1
3Φ

(ij(klm))
abc + Ψjkr

abch
ilm
r

)
xi ⊗ {xj , xk, {xl, xm}}

+ ~4
(

Φ
(ijk)
abc −

1
36Φ

(ix(y(zj)))
abc α r

xyα
k

rz + 1
6

(
Ψ

(xj)y
abc h

kzr
y α s

zxα
i

rs + Ψ
(xy)z
abc hrskz α i

rxα
j

ys

))
xi

⊗ {xj , xk}+ UWT.
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Then, by substituting (7.37) and (7.38) into ~(α(ab
dGc)d) = ~

(
H

(4)
abc

)
and comparing the

elements on the both sides of the resulting equality we find

Ψijk
abc = α d

(ab α
k

c)r h
rij
d − α k

dr α
d

(ab h
rij
c) ,

Φ
(ij(klm))
abc = 3

(
α i
rsα

d
(ab h

rjk
c) h

slm
d −Ψjkr

abch
ilm
r

)
,

Φ
(ijk)
abc = 1

3α
d

(ab W
ijk
c)d + 1

18Φ
(ix(yzj))
abc α r

xyα
k

rz − 1
3

(
Ψxjy
abch

kzr
y α s

zxα
i

rs + Ψxyz
abc h

rsk
z α i

rxα
j

ys

)
,

where in the last expression we used the symmetries Ψijk
abc = Ψjik

abc and Φ
(ij(klm))
abc = Φ

(ij(kml))
abc .

Finally, using

1
3Φ

(ijk)
abc {xi, xj , xk} = Φijk

abc{xi, xj , xk},
1
15Φ

(ij(klm))
abc {xi, xj , xk, xl, xm} = Φijklm

abc {xi, xj , xk, xl, xm},

we obtain (5.19), (5.20) and (5.21). To complete the proof it would require to compute all

elements in ~(α(ab
dGc)d) = ~

(
H

(4)
abc

)
as we did in Section 7.5 above. Here we will not attempt

to reach this goal. An important question is whether the coefficients Ψijk
abc, Φijk

abc and Φ
ijklm
abc can

be written in an elegant and compact form. We leave these goals as open questions for a further
study.
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