
Symmetry, Integrability and Geometry: Methods and Applications SIGMA 13 (2017), 002, 30 pages

Symmetries of the Space

of Linear Symplectic Connections

Daniel J.F. FOX
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28012 Madrid, Spain

E-mail: daniel.fox@upm.es

Received June 30, 2016, in final form January 07, 2017; Published online January 10, 2017

https://doi.org/10.3842/SIGMA.2017.002

Abstract. There is constructed a family of Lie algebras that act in a Hamiltonian way on
the symplectic affine space of linear symplectic connections on a symplectic manifold. The
associated equivariant moment map is a formal sum of the Cahen–Gutt moment map, the
Ricci tensor, and a translational term. The critical points of a functional constructed from
it interpolate between the equations for preferred symplectic connections and the equations
for critical symplectic connections. The commutative algebra of formal sums of symmetric
tensors on a symplectic manifold carries a pair of compatible Poisson structures, one induced
from the canonical Poisson bracket on the space of functions on the cotangent bundle poly-
nomial in the fibers, and the other induced from the algebraic fiberwise Schouten bracket on
the symmetric algebra of each fiber of the cotangent bundle. These structures are shown to
be compatible, and the required Lie algebras are constructed as central extensions of their
linear combinations restricted to formal sums of symmetric tensors whose first order term
is a multiple of the differential of its zeroth order term.
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1 Introduction

A (linear) symplectic connection on a symplectic manifold (M,Ω) is a torsion-free affine con-
nection preserving the symplectic form Ω. The space S(M,Ω) of symplectic connections is
a symplectic affine space; the difference of two symplectic connections is identified with a sec-
tion of the bundle S3(T ∗M) of completely symmetric covariant three tensors, and the symplectic
form 
 on S(M,Ω) is given by integrating over M the pairing induced on such sections by Ω.
The geometry of the symplectic affine space (S(M,Ω),
) is the focus of this note.

Efforts have been made to identify geometrically interesting classes of symplectic connections
analogous to classes of connections studied in the Riemannian setting, such as the Levi-Civita
connections of Einstein or constant scalar curvature metrics. Such classes are defined in terms of
the zeros and critical points of functionals on (S(M,Ω),
) equivariant or invariant with respect
to some action of some group of symplectomorphisms or Hamiltonian diffeomorphisms.

The geometry of any symplectic space is reflected in its Poisson algebra of functions. In-
teresting functionals on (S(M,Ω),
) are constructed from the curvature of ∇ ∈ S(M,Ω). The
simplest interesting classes of symplectic connections that have been studied are those of Ricci
type, the preferred symplectic connections (these include the Ricci flat symplectic connections),
and the critical symplectic connections. The focus here is on preferred and critical symplectic
connections.
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The critical points of the integral of the trace of the square of the Ricci endomorphism are the
preferred symplectic connections first studied by F. Bourgeois and M. Cahen [5, 6]. A symplectic
connection is preferred if and only if there vanishes the complete symmetrization of the covariant
derivative of its Ricci tensor Ricij = Rij , that is, it solves (δ∗Ric)ijk = −∇(iRjk) = 0. The
functionals given by integrating the trace of higher even powers of the Ricci endomorphism play
a role in the averaging procedure used by Fedosov in [9], and, as is explained briefly in Section 4.3,
their critical points generalize preferred symplectic connections. However, because the first
Pontryagin class of a symplectic manifold equals the integral of an expression quadratic in the
curvature of the connection, the class of preferred symplectic connections is the only interesting
class of symplectic connections obtained as the critical points of a functional given by integrating
expressions quadratic in the curvature tensor (this observation is due to Proposition 2.4 of [6];
see also the introduction of [10]).

In [7], M. Cahen and S. Gutt showed that the action of the group of Hamiltonian diffeomor-
phisms on S(M,Ω) is Hamiltonian, with a moment map denoted here by K(∇) (see (4.3) for
its definition). In [10], the author began the study of the critical symplectic connections, that
are defined to be the critical points of the integral E(∇) =

´
M K(∇)2Ωn (where Ωn = 1

n!Ω
n)

with respect to arbitrary variations of ∇. A symplectic connection ∇ is critical if and only if
the Hamiltonian vector field HK(∇) generated by K(∇) is an infinitesimal automorphism of ∇.
Explicitly this means that H(K(∇)) = 0 where H(f)ijk = (LHf∇)ij

pΩpk, Hf is the Hamiltonian
vector field generated by f ∈ C∞(M), and LHf is the Lie derivative along Hf . The moment
map K(∇) is the sum of a multiple of the twofold divergence of the Ricci tensor of ∇ and a multi-
ple of the complete contraction of the first Pontryagin form of∇ with Ω∧Ω. By the main theorem
of D. Tamarkin [19], a functional on S(M,Ω) given by integrating against Ωn polynomials in the
curvature tensor and its covariant derivatives contracted with the symplectic form is indepen-
dent of the choice of connection if and only if its integrand is, modulo divergences, a polynomial
in Pontryagin forms contracted with the symplectic form. It follows that K is in some sense, not
made precise here, the simplest symplectomorphism equivariant map from S(M,Ω) to C∞(M).

Suppose (M,Ω) is compact, and fix a reference symplectic connection ∇0. Here there are
constructed, for each (s, t) ∈ R× R×, a Lie bracket (( · , · ))s,t on

ĥ = C∞(M)⊕ Γ
(
S2(T ∗M)

)
⊕ Γ

(
S3(T ∗M)

)
(1.1)

and a Hamiltonian action of the Lie algebra (ĥ, (( · , · ))s,t) on (S(M,Ω),
). The associated mo-
ment map is essentially a linear combination of K and the Ricci tensor (see (6.16) for the precise
expression when (s, t) = (1, 1); it requires some preliminary discussion to make sense of it). The
choice of ∇0 is unimportant in the sense that the Lie algebras associated with different choices
of ∇0 are isomorphic. In fact, the brackets (( · , · ))s,t (and corresponding Hamiltonian actions)
for which neither s nor t is 0 are all pairwise isomorphic, so isomorphic to (( · , · )) = (( · , · ))1,1;
the reason for considering the full family is that it interpolates between the degenerate cases
(s, t) = (1, 0) and (s, t) = (0, 1) (this is discussed further below). In (1.1), the factor C∞(M)
should be seen as the central extension of the Lie algebra ham(M,Ω) of Hamiltonian vector fields,
while Γ(S2(T ∗M)) should be seen as the Lie algebra of infinitesimal gauge transformations of
the symplectic frame bundle. The Lie bracket (( · , · )) combines and extends these actions.

The somewhat complicated definition of the bracket (( · , · )) is summarized now. The precise
definition is (6.14) of Section 6.1; see also Theorem 6.4. The algebra Ŝ(M) whose elements
are formal linear sums of completely symmetric tensors on (M,Ω) (see Section 3 for the precise
meaning) carries two Lie brackets, a differential Lie bracket J · , · K induced from the Schouten
bracket on symmetric contravariant tensors on M and an algebraic Lie bracket ( · , · ) induced
fiberwise by regarding the symmetric tensor algebra as the associated graded algebra of the
Weyl algebra. The definition of (( · , · )) requires Lemma 3.5, showing that these Lie brackets are
compatible in the sense of bi-Hamiltonian systems; precisely, the differential, in the Lie algebra
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cohomology of ( · , · ), of the symmetrized covariant derivative along ∇ equals the Schouten
bracket J · , · K (see (2) of Lemma 3.5). (Although it seems that this claim about the Schouten
bracket must be known in some form to experts, I do not know a reference.) This means that
any linear combination [ · , · ]s,t = s( · , · ) + tJ · , · K is again a Lie bracket.

The space Ŝ(M) is too big because its 1-graded part comprises all one-forms on M , rather
than the closed one-forms, that are dual to symplectic vector fields. Because the [ · , · ] = [ · , · ]1,1
bracket of closed one forms in Ŝ(M) need not be closed, it is inadequate to restrict to the subspace
of Ŝ(M) the 1-graded part of which comprises closed one-forms (although something can be done
in this directions; see Lemma 3.11). However, the subspace Ĥ(M), comprising formal sums α0 +
α1 + · · · such that αk ∈ Γ(Sk(T ∗M)) and α1 = −dα0 is a subalgebra of (Ŝ(M), [ · , · ]), and this
subalgebra plays a prominent role in the discussion. Lemmas 3.7 and 3.11 describe its structure.

Although (Ŝ(M), [ · , · ]) cannot be made to act on (S(M,Ω),
) in any obvious way, the sub-
algebra Ĥ(M) admits a symplectic affine action on (S(M,Ω),
) such that the ideal Ĥ4(M) =∏
k≥4 Γ(Sk(T ∗M)) acts trivially. This action is weakly Hamiltonian, but the cocycle obstructing

equivariance can be computed explicitly. This yields a central extension that acts in a Hamil-
tonian manner on (S(M,Ω),
), with moment map M̂. Since the Lie ideal Ĥ4(M) acts trivially,
quotienting by it yields an action of the Lie algebra (ĥ, (( · , · ))).

The action of the group of gauge transformations of the symplectic frame bundle of M on the
space of affine connections, possibly having torsion, preserving Ω, is Hamiltonian with a moment
map constructed in the manner of Atiyah and Bott in [1]. See Theorem 5.1 for the precise
statement. Using the symplectic form the Lie algebra of infinitesimal gauge transformations
can be identified with the space Γ(S2(T ∗M)) equipped with a constant multiple of the algebraic
Lie bracket mentioned above. The obstruction to this Lie algebra acting on S(M,Ω) is given
by the Schouten bracket. However, an extended bracket on Γ(S2(T ∗M)) ⊕ Γ(S3(T ∗M)) built
from the Poisson bracket and the algebraic bracket does act on S(M,Ω), by symplectic affine
transformations. This extended action can be combined in a coherent way with the action of
ham(M,Ω) on S(M,Ω). While the resulting action is only weakly Hamiltonian, the cocycle
measuring nonequivariance of the moment map can be computed explicitly and from it there is
constructed the Hamiltonian action of (ĥ, (( · , · ))s,t). This action combines, at the infinitesimal
level, the actions of Ham(M,Ω) and the group of gauge transformations to yield a Hamiltonian
action with a moment map M̂ that simultaneously extends the moment map K for the action of
the Lie algebra ham(M,Ω) of Hamiltonian vector fields and the Atiyah–Bott moment map.

When M is compact, there is constructed (see (6.17) for the precise definition) from M̂
a functional N : S(M,Ω) → R. There is a graded symmetric bilinear pairing on Ĥ(M) that
descends to ĥ. Pairing the moment map M̂ with itself with respect to this pairing yields N. The
critical points of N are the solutions of

t2H(K(∇)) + s2δ∗Ric = 0. (1.2)

The equations (1.2) interpolate between the equations for preferred and critical symplectic con-
nections. The case (s, t) = (1, 0) yields the equations for the preferred symplectic connections
introduced by Bourgeois and Cahen [6], and the case (s, t) = (0, 1) recovers the equations for
the critical symplectic connections introduced by the author in [10].

Remark 1.1. In [10] it is shown that on a 2-manifold a preferred symplectic connection is
critical. Consequently, on a 2-dimensional symplectic manifold a preferred symplectic connection
solves (1.2) for any (s, t) ∈ R2.

Section 3 gives the background needed to formulate and prove Lemma 3.5. Section 4 recalls
the definitions and basic characterizations of critical and preferred symplectic connections. Sec-
tion 5 discusses the failure of the symplectomorphism group to act in a Hamiltonian manner on
S(M,Ω). Finally, the construction of (( · , · ))s,t and its action on S(M,Ω) is given in Section 6.
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2 Preliminaries

2.1. Smooth means C∞, and all manifolds, bundles, sections, etc. are smooth, unless otherwise
indicated. Throughout, (M,Ω) is a connected 2n-dimensional symplectic manifold oriented by
the Liouville volume form Ωn = 1

n!Ω
n. For simplicity, M is often assumed compact, although

most claims generalize straightforwardly to the noncompact setting.
For a finite-dimensional real vector space V, Sk(V) and Λk(V) denote the kth symmetric and

antisymmetric powers of V. Purely algebraic constructions on vector spaces extend straightfor-
wardly to vector bundles and their spaces of sections, and the same notations will be used in
both contexts. For a smooth vector bundle E → M , Γ(E) denotes the vector space of smooth
sections of E, and Λk(E) and Sk(E) denote the kth antisymmetric and symmetric powers of E.
By definition Λ0(E) = S0(E) = C∞(M).

Tensors are usually indicated using the abstract index conventions (see [17] or [20]). Indices
are labels and do not indicate a choice of frame. An index is in either up or down position. Up
(down) indices label contravariant (covariant) tensors. For example, ∇i∇jXk (which could also
be written (∇2X)ij

k) indicates the second covariant derivative of the vector field Xk. Were
a frame Ei chosen, ∇i∇jXk would correspond to (∇2X)(Ei, Ej) = ∇Ei∇EjX −∇∇EiEjX, and

not to∇Ei∇EjX. The up index k on Xk is simply a label that indicates that X is a contravariant
vector field. The summation convention is used in the following form: repetition of a label
in up and down position indicates the trace pairing. Enclosure of indices in square brackets
(parentheses) indicates complete antisymmetrization (symmetrization) over the enclosed indices,
so that, for example, aij = a(ij) +a[ij] indicates the decomposition of a contravariant two-tensor
into its symmetric and skew-symmetric parts. An index included between vertical bars | | is
omitted from an indicated (anti)symmetrization; for example 2a[i|jk|l] = aijkl − aljki.

The conventions are illustrated by the following definitions. The curvature Rijk
l and tor-

sion τij
k of an affine connection ∇ are defined by 2∇[i∇j]Xk = Rijp

kXp − τij p∇pXk. The
Ricci curvature of ∇ is Rij = Rpij

p. (Sometimes, for readability, Ric is written instead of Rij .)
The antisymmetric bivector Ωij inverse to Ωij is defined by ΩipΩpj = −δj i. Indices are

raised and lowered using Ωij and Ωij by contracting with these tensors consistently with the
conventions Xi = XpΩpi and Xi = ΩipXp. When it is raised or lowered, an index’s horizontal
position is maintained. The symplectic sharp and flat operators on a vector field Xi and a one-
form αi are defined by Xgi = XpΩpi and αf i = Ωipαp. These are inverses, so that (Xg)f = X.
For a vector field X, Xi and Xg are synonyms and both notations will be used.

2.2. Let Symp(M,Ω) be the group of compactly supported symplectomorphisms of (M,Ω).
Its Lie algebra symp(M,Ω) comprises compactly supported vector fields X that are locally
Hamiltonian, meaning LXΩ = 0; equivalently Xg = Ω(X, · ) is closed. Define the Hamiltonian
vector field Hf of f ∈ C∞(M) by Hif = −df i = Ωpidfp. Since H{f,g} = [Hf ,Hg] for the Poisson
bracket {f, g} = Ω(Hf ,Hg) of f, g ∈ C∞(M), the compactly supported Hamiltonian vector fields
constitute a subalgebra ham(M,Ω) ⊂ symp(M,Ω). For a 2k-form σ and Ωk = 1

k!Ω
k,

σ ∧ Ωn−k = 1
k!2k

Ωi1i2
...Ωi2k−1i2kσi1...i2kΩn = 1

k!2k
σi1

i1
i2
i2
...
...
ik
ikΩn. (2.1)

By (2.1), {f, g}Ωn = df ∧ dg ∧Ωn−1 = d(fdg ∧Ωn−1). Since, if M is compact,
´
M{f, g}Ωn = 0

for f, g ∈ C∞(M), the subspace C∞0 (M) ⊂ C∞(M) comprising mean zero functions is a Lie
subalgebra of C∞(M), isomorphic to ham(M,Ω) via the map f → Hf . If M is noncompact,
then ham(M,Ω) is identified with the Lie algebra (C∞c (M), { · , · }) of compactly supported
smooth functions. The subgroup Ham(M,Ω) ⊂ Symp(M,Ω)0 of Hamiltonian diffeomorphisms
of (M,Ω) comprises symplectomorphisms of (M,Ω) that can be realized as the time one flow of
a normalized time-dependent Hamiltonian on M × [−1, 1], where normalized means mean-zero
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if M is compact and compactly supported if M is noncompact. The infinitesimal generator of
a flow by Hamiltonian diffeomorphisms is a Hamiltonian vector field, so that the Lie algebra of
Ham(M,Ω) is ham(M,Ω).

2.3. An action of a Lie group G on a symplectic manifold (M,Ω) is symplectic if G acts by
symplectic diffeomorphisms. The associated Lie algebra homomorphism from the Lie algebra g
of G to symp(M,Ω), defined by x→ Xxp = d

dt

∣∣
t=0

exp(−tx) · p, is weakly Hamiltonian if there is
a map µ : M → g∗ such that for each x ∈ g, the Hamiltonian vector field Hµ(x) equals the vector
field Xx determined by the action. If µ is equivariant with respect to the given action of G on M
and the coadjoint action of G on g∗, then the action is Hamiltonian and µ is a moment map.
When G is simply connected, this equivariance is equivalent to the requirement that when viewed
as a map from g to C∞(M), the map µ be a Lie algebra homomorphism, {µ(x), µ(y)} = µ([x, y]),
and the induced action of g is said to be Hamiltonian if it satisfies this last condition. For
a weakly Hamiltonian action that is not necessarily Hamiltonian, the associated µ is called
a nonequivariant moment map. Since some authors do not require equivariance in the definition
of a moment map, the redundant expression equivariant moment map is sometimes used for
clarity. These definitions are applied in the infinite-dimensional context, in which case they are
to be understood formally.

2.4. This subsection fixes terminology related to affine actions of a Lie algebra. This is needed
mainly in Section 6.1. A map f : A → B between affine spaces A and B is affine if there is
a linear map L(f) : V → W , between the vector spaces V and W of translations of A and B,
such that f(q)−f(p) = L(f)(q−p) for all p, q ∈ A. Under composition the bijective affine maps
of A to itself form the group Aff(A) of affine automorphisms of A, and L : Aff(A) → GL(V )
is a surjective homomorphism. A one-parameter subgroup through the identity in Aff(A) has
the form IdA +tφ + O(t2) for some affine map φ : A → V . Consequently, the Lie algebra
aff(A) of Aff(A) is the vector space of affine maps from A to V equipped with the bracket
[f, g] = L(f) ◦ g − L(g) ◦ f .

An affine representation of a Lie algebra (g, [ · , · ]) on the affine space A is a Lie algebra ho-
momorphism ρ : g→ aff(A), that is, a linear map satisfying ρ([a, b]) = L(ρ(a))ρ(b)−L(ρ(b))ρ(a)
for all a, b ∈ g. An affine action of a Lie algebra (g, [ · , · ]) on the affine space A is a biaffine
map π : g×A→ A such that π(0, p) = p for all p ∈ A and a · (b · p)− b · (a · p) = [a, b] · p− p for
all p ∈ A and all a, b ∈ g. That this identity is an equality of vectors in V explains the need for
the p on its right-hand side. That π be biaffine means that the maps p → a · p = π(a, p) and
a→ a ·p = π(a, p) are affine maps from A to A for all a ∈ g and from g to A for all p ∈ A. (Note
that a biaffine map need not be affine with respect to the product affine structure on g×A.)

Lemma 2.1. For an affine space A and a Lie algebra g, a map ρ : g → aff(A) is an affine
representation if and only if π : g×A→ A defined by π(a, p) = p+ ρ(a)p is an affine action.

First one shows that ρ is linear if and only if π is biaffine and π(0, p) = 0 for all p ∈ A. Then
one checks directly that, in this case, ((a · (b · p)− b · (a · p)) − ([a, b] · p − p) = (L(ρ(a))ρ(b) −
L(ρ(b)ρ(a) − ρ([a, b]))p. The representation ρ is said to be associated with the affine action π.
The stabilizer of p0 ∈ A under the affine action of g means the subalgebra {a ∈ g : a ·p0 = p0} =
{a ∈ g : ρ(a)p0 = 0}.

A typical example is the affine action X ·∇ = ∇+LX∇ of the Lie algebra of vector fields on M
on the space of affine connections on M . The associated affine representation is ρ(X) = LX∇.

A symplectic affine space means an affine space A equipped with a symplectic form Ω inva-
riant under the action of the group of translations of A. An affine representation ρ : g→ aff(A)
on a symplectic affine space (A,Ω) is symplectic affine if each ρ(a) is symplectic, meaning the
linear part L(ρ(a)) satisfies Ω(L(ρ(a))u, v) + Ω(u, L(ρ(a))v) = 0 for all a ∈ g and u, v ∈ V .
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Similarly, an affine action is symplectic affine if the corresponding affine representation is
symplectic.

2.5. An affine connection is symplectic if ∇iΩjk = 0. For background about symplectic connec-
tions see [2] or [8] and the references therein. The space T(M,Ω) of symplectic affine connections
on (M,Ω) is an affine space modeled on the vector space Γ(T ∗M⊗S2(T ∗M)) of covariant tensors
Πijk = Πi(jk) symmetric in the last two entries. Precisely, if∇ ∈ T(M,Ω) and ∇̄ = ∇+Πij

k then
∇̄iΩjk = −2Πi[jk], so that ∇̄ ∈ T(M,Ω) if and only if Πi[jk] = 0. Note that Πip

p = 0, reflecting
that a symplectic affine connection preserves the associated volume form Ωn. The affine sub-
space S(M,Ω) ⊂ T(M,Ω) comprising torsion-free symplectic affine connections is modeled on
the vector space S3(M), for the difference tensor of torsion-free connections satisfies Π[ij]

k = 0,
and with Πi[jk] = 0, this implies Πijk = Π(ijk). The space S(M,Ω) is nonempty, for if ∇̄ is any

torsion-free affine connection then ∇ = ∇̄+ 2
3Ωkp∇̄(iΩj)p is symplectic. It is convenient to write

T∇T(M,Ω) = Γ(T ∗M ⊗ S2(T ∗M)) or T∇S(M,Ω) = S3(M) for the tangent space to the affine
spaces T(M,Ω) or S(M,Ω) at ∇. The focus here is on S(M,Ω), and it is mainly in Section 5.1
that reference will be made to T(M,Ω). Throughout this paper symplectic connection means
a torsion-free symplectic connection, while symplectic affine connection means a connection
preserving Ω but possibly having torsion.

Since, for ∇ ∈ S(M,Ω), Ωn is ∇-parallel, the curvature −Rijp p of the connection induced on
Λ2n(T ∗M) by ∇ vanishes. Hence ∇ has symmetric Ricci tensor, for 2R[ij] = −Rijp p = 0. By
the Ricci identity, 0 = 2∇[i∇j]Ωkl = −2Rij[kl], where Rijkl = Rijk

pΩpl. The algebraic Bianchi
identity and Rij[kl] = 0 yield Rp

p
ij = −2Rip

p
j = 2Rpij

p = 2Rij , from which it follows that
every nontrivial trace of Rijkl is a constant multiple of Rij .

2.6. Let (V,Ω) be a symplectic vector space. On Wp,q(V) = Λp(V)⊗ Sq(V) define

Ω(α, β) = (−1)p 1
p!αi1...ipj1...jqβ

i1...ipj1...jq . (2.2)

This pairing is graded symmetric in the sense that Ω(α, β) = (−1)|α||β|Ω(β, α) for homogeneous
elements α and β, where |α| = p + q is the degree of α ∈ Wp,q(V). Integrating (2.2) yields
a Symp(M,Ω)-invariant graded symmetric pairing on Γ(Wp,q(T ∗M)) defined by

〈〈α, β〉〉 =

ˆ
M

Ω(α, β) Ωn = (−1)p 1
p!

ˆ
M
αi1...ipj1...jqβ

i1...ipj1...jq Ωn. (2.3)

Using an almost complex structure compatible with Ω it is straightforward to show that the pair-
ing 〈〈α, β〉〉 is weakly nondegenerate in the sense that if 〈〈α, β〉〉 = 0 for all compactly supported
β ∈ Γ(Wp,q(T ∗M)) then α = 0.

2.7. Fix a 2n-dimensional symplectic vector space (V,Ω). The (linear) symplectic frame bundle
π : F → M is the G = Sp(V,Ω) principal bundle whose fiber over p ∈ M comprises symplectic
linear maps u : (V,Ω) → (TpM,Ω). A symplectic affine connection ∇ determines and is deter-
mined by a principal connection on F. The space T(M,Ω) of symplectic affine connections on M
is an affine space modeled on the vector space of 1-forms taking values in the adjoint bundle
Ad(F) = F ×Ad g associated with F by the adjoint action of G on its Lie algebra g =( V,Ω).

2.8. Given α, β ∈ T∇T(M,Ω), composing the bundle-valued two-form (α∧β)ijk
l = 2α[i|p|

lβj]k
p

= −2α[i
plβj]kp with the trace on endomorphisms yields the two-form tr(α∧ β)ij = 2α[i|p|

qβj]q
p.

By (2.1), tr(α ∧ β) ∧ Ωn−1 = −αijkβijkΩn. By (2.3) the two-form 
 defined on T(M,Ω) by


∇(α, β) = −
ˆ
M

tr(α ∧ β) ∧ Ωn−1 =

ˆ
M
αijkβ

ijk Ωn = 〈〈α, β〉〉, α, β ∈ T∇T,
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is weakly nondegenerate. The translation invariance, 
∇+Π = 
∇, for Π ∈ T∇T(M,Ω) means 

is parallel, so closed, and so 
 is a symplectic form. The subspace S(M,Ω) ⊂ T(M,Ω) is
symplectic.

The group of diffeomorphisms acts on the space of affine connections on the right, by pull-
back. Precisely φ∗(∇) is defined by φ∗(∇)XY = Tφ−1(∇Tφ(X)Tφ(Y )). This action preserves
the torsion-free connections. Consequently, Symp(M,Ω) acts on S(M,Ω) and T(M,Ω) by pull-
back, and this action preserves 
. Integration by parts yields the corresponding infinitesimal
statement, 
∇(LXα, β) + 
∇(α,LXβ) = 0, for X ∈ symp(M,Ω).

3 Symmetric tensors on symplectic manifolds

3.1. The symmetric tensor algebra S(V), which is, by definition, a quotient of the tensor algebra,

can be identified, as a graded vector space, with the graded vector space ⊕k≥0S
k(V) equipped

with the symmetric product (α � β)i1...ik+l = α(i1...ikβik+1...ik+l), for α ∈ Sk(V) and β ∈ Sl(V).
The subspace Sk(V) is identified with the space Polk(V∗) of homogeneous degree k polynomials
on the dual vector space V∗, and the product � corresponds to multiplication of polynomials.
Elements of the formally completed symmetric tensor algebra Ŝ(V) =

∏
k≥0 S

k(V) are identified
with formal infinite sums of symmetric tensors, and correspond with formal power series on V∗.

Let S(T ∗M) = ⊕k≥0S
k(T ∗M) and Ŝ(T ∗M) =

∏
k≥0 S

k(T ∗M). Set Sk(M) = Γ(Sk(T ∗M)).

It is more convenient to work with the direct product Ŝ(M) =
∏
k≥0S

k(M) than with Γ(S(T ∗M))

or the direct sum S(M) = ⊕k≥0S
k(M). Because a section of S(T ∗M) need not have bounded

degree, the space Γ(S(T ∗M)) can be larger than S(M). On the other hand, the direct prod-
uct Ŝ(M) equals the space of sections of Ŝ(T ∗M). An element of Ŝ(M) is regarded as a formal
infinite sum of symmetric tensors on M . There are inclusions, S(M) ⊂ Γ(S(M)) ⊂ Ŝ(M), as
associative algebras. In general, the algebraic constructions considered here are valid on any of
these spaces, and, although they are usually formulated in terms of Ŝ(M), their reformulations
for the smaller spaces are generally trivial or straightforward.

An element α ∈ Sk(V) or α ∈ Sk(M) is said to have degree |α| = k. For all i ≥ 1, the subspaces
Sk(V) = ⊕i≥kSi(V) and Ŝk(V) =

∏
i≥k S

i(V) are ideals with respect to the commutative algebra
structure determined by �. The p = 0 case of (2.2) extends to a graded symmetric pairing
on Ŝ(V) in such a way that Sk(V) and Sl(V) are orthogonal if k 6= l. Likewise, as commutative
algebras, S(M) and Ŝ(M) are filtered by the ideals Sk(M) and Ŝk(M) comprising sums of tensors
of degree at least k, and the pairing (2.3) extends to a graded symmetric pairing on Ŝ(M).

3.2. If (V,Ω) is a symplectic vector space, then S(V∗) carries a Lie bracket, determining with �
a Poisson algebra, that can be defined most simply as the unique Poisson bracket ( · , · ) on
(S(V∗),�) such that (α, β) = Ωijαiβj for all α, β ∈ V∗. By definition, ( · , · ) has degree −2.
The bracket ( · , · ) can be described explicitly as follows. The space of functions on V carries
the Poisson structure determined by Ω. Transporting this Poisson structure to S(V∗) via the
identification of S(V∗) with the ring of polynomials on V, yields the bracket ( · , · ) on S(V∗).
Concretely, for α ∈ Sk(V∗), the corresponding polynomial α̂ ∈ Polk(V) is α̂(u) = αi1...iku

i1 · · ·uik ,
and it generates the Hamiltonian vector field Hiα̂ = −kαi i1...ik−1

ui1 · · ·uik−1 on V. The Poisson

bracket of α̂ and β̂ is the element Ω(Hα̂,Hβ̂) of Polk+l−2(V) corresponding to (α, β) ∈ Sk+l−2(V∗)
defined by

(α, β)i1...ik+l−2
= klαp(i1...ik−1

βik...ik+l−2)
p (3.1)

= kl
k+l−2

(
(k − 1)αpi1(i2...ik−1

βik...ik+l−2)
p − (l − 1)βpi1(i2...il−1

αil...ik+l−2)
p
)
.

In the case l = 1 and k > 1, (α, β) = kβpαpi1...ik−1
is simply k times interior multiplication of

the vector field βi in α. The Poisson bracket (3.1) extends to Ŝ(V∗) with the same definition.
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Although it is true by construction that ( · , · ) is a Lie bracket that forms with the symmetric
product � a Poisson structure, this can also be checked directly. Let γ ∈ Sm(V∗). That ( · , · )
is a Lie bracket follows by summing cyclic permutations of the identity

((α, β), γ)i1...ik+l+m−4
= klm

(
(k − 1)αpq(i1...ik−2

βik−1...ik+l−3

pγik+l−2...ik+l+m−4)
q

− (l − 1)βpq(i1...il−2
αik−1...ik+l−3

pγik+l−2...ik+l+m−4)
q
)

(obtained by using both equalities in (3.1)). Similarly, verifying (α�β, γ) = α�(β, γ)+(α, γ)�β
is straightforward using (3.1), and so ( · , · ) is a Poisson bracket.

Note that (S2(V∗), ( · , · )) is a Lie subalgebra of (S(V∗), ( · , · )). Using the easily checked in-
variance Ω((α, β), γ)+Ω(β, (α, γ)) = 0 for α ∈ S2(V∗) and β, γ ∈ Sk(V∗), it is straightforward to
show that the map S2(V∗)→ End(V) defined by α→ (α, · )

∣∣
S1(V∗) is a Lie algebra isomorphism

onto the symplectic Lie algebra (V∗,Ω) (see Section 2 of [15] for a detailed discussion).

Remark 3.1. The Weyl algebra of the symplectic vector space (V,Ω) is the quotient of the
tensor algebra of V by the ideal generated by elements of the form u ⊗ v − v ⊗ u − Ω(u, v) for
u, v ∈ V. The additive filtration of the Weyl algebra at level k is spanned by k-fold products of
elements of V. Its associated graded algebra is isomorphic as a vector space to the symmetric
algebra of V and carries a Poisson bracket defined by projecting the commutator of elements
of level k and l onto level k + l − 2. Applying this construction to (V∗,Ω) yields the algebraic
bracket (3.1).

Remark 3.2. Another construction of (3.1) can be given in terms of the notion of prolongation.
This is recalled following [12]; see also [18, Chapter 7.3] and [14, Chapter I.1].

The first prolongation g(1) of the subspace g ⊂ hom(V,W) ' W⊗V∗ is defined by g(1) = {A ∈
hom(V, g) ' g ⊗ V∗ : A(u)v = A(v)u for all u, v ∈ V}, and, for k ≥ 2, the kth prolongation g(k)

of g is defined inductively by g(k) = (g(k−1))(1). As vector spaces,

g(k) =
(
g⊗⊗k(V∗)

)
∩
(
W⊗ Sk+1(V∗)

)
. (3.2)

When W = V, so g ⊂ End(V), define g(0) = g and g(−1) = V. Using the identification (3.2),
a graded Lie bracket is defined on the direct sum ⊕k≥−1g

(k) and its formal completion
∏
k≥−1 g

(k)

as follows. Define an antisymmetric bilinear pairing [ · , · ] : V ⊗ Sk+1(V∗) × V ⊗ Sl+1(V∗) →
V⊗ Sk+l+1(V∗) by setting

[v1 ⊗ s1, v2 ⊗ s2] = v1 ⊗ ((Dv2s1)� s2)− v2 ⊗ (s1 � (Dv1s2)), (3.3)

for v1, v2 ∈ V, s1 ∈ Sk(V∗), and s2 ∈ Sl(V∗), and extending linearly, where Dv : Sk(V∗) →
Sk−1(V∗) is defined by Dvs = kι(v)s for v ∈ V (the constant factor is chosen so that Dv

is a derivation of the symmetric product �). The bracket (3.3) restricts to yield a bracket
[ · , · ] : g(k)×g(l) → V⊗Sk+l+1(V∗), and it is straightforward to check that the image is contained
in g(k+l) and that the resulting bracket satisfies the Jacobi identity, so makes ⊕k≥−1g

(k) and∏
k≥−1 g

(k) into Lie algebras. In the case (V,Ω) is a symplectic vector space and g =( V,Ω), this
can be seen as follows. If the differential of the flow of a vector field on V preserves the symplectic
frame bundle V×Sp(V,Ω) then the (k+1)st coefficient of the Taylor expansion of the vector field
takes values in g(k). The Lie bracket is that induced by taking jets of Lie brackets of vector fields.
Since W = V, an element of g(0) can be viewed as an endomorphism of V; the definition (3.3) is
made so that the bracket [ · , · ] agrees on g(0) with the algebraic commutator of endomorphisms.
That is [A,B]i

j = (A ◦ B − B ◦ A)i
j = Ap

jBi
p − Bp jAi p for A,B ∈ g(0) ⊂ hom(V,V). An

endomorphism Ai
j of (V,Ω) is infinitesimally symplectic if and only if A[ij] = 0, so, using Ω,

g is identified with S2(V∗) equipped with the Lie bracket [α, β]ij = 2αp(iβj)
p = 2(α, β)ij for
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α, β ∈ S2(V∗). Likewise, using Ω to identify the leading V (= W) in (3.2) with V∗, it follows
from (3.2) that the kth prolongation g(k) is identified with Sk+2(V ∗). Then ⊕k≥−1g

(k) and∏
k≥−1 g

(k) are identified with the ideals S1(V∗) ⊂ S(V∗) and Ŝ1(V∗) ⊂ Ŝ(V∗) and (3.3) induces
on these an algebraic Lie bracket [ · , · ] of degree −2 with respect to the grading of S(V). The
bracket [ · , · ] is related to the bracket (3.1) by kl[α, β] = (k + l − 2)(α, β) for α ∈ Sk(V∗) and
β ∈ Sl(V∗).

The preceding can be recast in the following manner. The graded linear map η : S(V∗) →
S(V∗) defined by η(α) = kα for α ∈ Sk(V∗) restricts to a linear isomorphism on S1(V∗). Then

{0} −→ R
ι−→ (S(V∗), ( · , · )) η−→ (S1(V∗), [ · , · ]) −→ {0}

is a central extension of Lie algebras, where ι is the inclusion of R as the central ideal S0(V∗) ⊂
(S(V∗), ( · , · )). The map η is an algebraic version of the operator associating to the polynomial
function α̂(u) = αi1...iku

i1 · · ·uik the Hamiltonian vector field Hiα̂ = −kαi i1...ik−1
ui1 · · ·uik−1 . Its

restriction to S1(V∗) is an isomorphism between ( · , · ) and [ · , · ].

Remark 3.3. A horizontal distribution on a symplectic fibration such that the corresponding
parallel transport preserves the fiberwise symplectic structure is also called a symplectic connec-
tion (see for example [16]). The symplectic affine connections considered here are symplectic
connections in this more general sense, although the converse is clearly false. For this reason
(and also to honor their role in Fedosov’s deformation quantization) what are here called sym-
plectic connections are sometimes called Fedosov connections; here the notions are distinguished
terminologically as linear and nonlinear symplectic connections.

The two notions encapsulate different points of view. Each is equivalent to the data of
a principal connection on what might be called the symplectic frame bundle of M , the point
being that symplectic frame bundle has two possible meanings, depending on whether symplectic
refers to the symplectic linear group or the symplectomorphism group of the reference symplectic
vector space (V,Ω). The linear symplectic frame bundle is the reduction of the usual linear frame
bundle determined by restricting to symplectic frames. A much flabbier notion is obtained by
instead considering as frames at p ∈M all symplectomorphisms from (V,Ω) to (TpM,Ω) mapping
0 ∈ V to 0 ∈ TpM . Although to define such a nonlinear symplectic frame bundle rigorously
requires restricting the class of symplectomorphisms considered, or working formally, e.g., with
infinite jets, morally there results a principal bundle with structure group an infinite-dimensional
group of (perhaps formal) symplectomorphisms of (V,Ω), and, by construction, F is a reduction
of this bundle. Correspondingly, there are two quite distinct notions of symmetries of S(M,Ω).
The usual one is to consider principal bundle automorphisms of the linear symplectic frame
bundle F, regarded as a principal bundle for the finite-dimensional group G = Sp(V,Ω) of linear
symplectic transformations. On the other hand, the symplectic frame bundle F can be regarded
as a subbundle of a principal bundle with structure group some infinite-dimensional Lie group Ĝ
of symplectomorphisms of (V,Ω) fixing the origin.

The automorphism group of F comprises the G-equivariant bundle maps from F to itself.
The group G(F) of gauge transformations of F is its subgroup comprising bundle automorphisms
of F covering the identity. A gauge transformation is naturally identified with a map from F

to G, equivariant with respect to the action of G on itself by conjugation, or, equivalently, with
a section of the bundle F ×G G associated with F by this action. Via this identification the
group structure corresponds to fiberwise composition. An infinitesimal gauge transformation
is a section of the adjoint bundle Ad(F). These form a Lie algebra L(F) under fiberwise Lie
bracket.

In the case of a frame bundle, a (infinitesimal) gauge transformation can be identified with
a section of the bundle End(TM) of endomorphisms of the tangent bundle. Precisely, an element
of G(F) is identified with gi

j ∈ Γ(End(TM)) such that giqgj
q = gi

pgj
qΩpq = Ωij . The inverse
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section g−1 then satisfies (g−1)ij = −gji. Similarly, an infinitesimal gauge transformation of F is
identified with a section αi

j ∈ Γ(End(TM)) such that α[ij] = 0; in general it is more convenient
to identify α with the corresponding element αij of S2(M). Alternatively, the Lie algebra g is
isomorphic as a G-module to S2(V∗) via the map A→ Ag defined by Ag(x, y) = Ω(Ax, y), and
via this isomorphism Γ(Ad(F)) is identified with (S2(M), [ · , · ]).

The preceding all makes formal sense with the nonlinear symplectic frame bundle in place of F,
and with the corresponding structure group Ĝ in place of G. Such notions can be given rigorous
sense at the Lie algebra level. The formal analogue of the infinitesimal Ĝ-gauge transformations
is the Lie algebra (Ŝ2(M), [ · , · ]), corresponding to the fiberwise action of the truncated pro-
longation (

∏
i≥0 g

(i), [ · , · ]) (as in Remark 3.2), comprising formal sums of covariant symmetric
tensors of rank at least two.

3.3. The pairing (2.3) on Sk(M) extends to a Symp(M,Ω)-invariant bilinear pairing on Ŝ(M)

by declaring Sk(M) and Sl(M) orthogonal if k 6= l. This pairing is graded symmetric in the sense
that 〈〈α, β〉〉 = (−1)|α||β|〈〈β, α〉〉 for homogeneous elements α and β. If a function is regarded as
a 0-tensor, then 〈〈 · , · 〉〉 agrees with the L2 inner product 〈〈f, g〉〉 =

´
M fgΩ on C∞(M).

A linear operator P : Sp(M) → Sq(M) has degree |P| = q − p. More generally, a linear
operator P : S(M) → S(M) has degree |P| = p if P(α) ∈ Sk+p(M) whenever α ∈ Sk(M). The
(formal) adjoint P∗ : Sq(M) → Sp(M) of P is the degree −|P| operator defined by 〈〈Pα, β〉〉 =
(−1)|α||P|〈〈α,P∗β〉〉. The choice of sign guarantees that (P∗)∗ = P and (PQ)∗ = (−1)|P||Q|Q∗P∗.

For example, for α ∈ S2(M), (α, · )∗ = −(α, · ), because the pairing 〈〈 · , · 〉〉 is invariant with
respect to the linear map (α, · ) : S(M)→ S(M) in the sense that

〈〈(α,Π1),Π2〉〉+ 〈〈Π1, (α,Π2)〉〉 = 0, for Π1,Π2 ∈ Sk(M). (3.4)

3.4. For ∇ ∈ S(M,Ω) and α ∈ Sk(M) define d∇αi1...ik+1
by d∇αi1...ik+1

= 2∇[i1αi2]i3...ik+1
, and

define the degree −1 symplectic divergence operator δ∇ : Ŝ(M)→ Ŝ(M) by

δ∇αi1...ik−1
= (−1)k−1 1

2(d∇α)p
p
i1...ik−1

= (−1)k−1∇pαi1...ik−1

p, α ∈ Sk(M).

The formal adjoint δ∗∇ : Sk(M)→ Sk+1(M) of δ∇ is given by

δ∗∇αi1...ik+1
= −∇(i1αi2...ik+1) = −∇i1αi2...ik+1

+ k
k+1d∇αi1(i2...ik+1), α ∈ Sk(M).

When it is not necessary to indicate the dependence on ∇ the subscripts are omitted and there
are written δ and δ∗ instead of δ∇ and δ∗∇. When δ∗ is applied to functions the subscript is always
omitted, because δ∗f = −df = Hgf . Note that the Poisson bracket {f, g} of f, g,∈ C∞(M) is
expressible as {f, g} = (δ∗f, δ∗g).

Lemma 3.4 is needed in the proof of Lemma 5.3.

Lemma 3.4. For ∇ ∈ S(M,Ω) and α ∈ Sk(M),

(k + 1)δδ∗αi1...ik + kδ∗δαi1...ik = (−1)k
(
2kR(i1

pαi2...ik)p − k(k − 1)Rp (i1i2
qαi3...ik)pq

)
= (−1)k

(
(α,Ric)i1...ik − k(k − 1)Rp (i1i2

qαi3...ik)pq

)
. (3.5)

Proof. The Ricci identity yields

(−1)k−1δ∗δαi1...ik = ∇(i1∇
pαi2...ik)p

= ∇p∇(i1αi2...ik)p + (k − 1)Rp (i1i2
qαi3...ik)pq −Rp (i1αi2...ik)p. (3.6)

Combining (3.6) with

(−1)k(k + 1)δδ∗αi1...ik = (k + 1)∇p∇(i1αi2...ikp) = k∇p∇(i1αi2...ik)p +∇p∇pαi1...ik
= k∇p∇(i1αi2...ik)p + kRp (i1αi2...ik)p,

yields (3.5). �
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3.5. The Schouten bracket of contravariant symmetric tensors on a smooth manifold M is
defined by regarding such tensors as functions on the cotangent bundle T ∗M polynomial in the
fibers and pairing them via the canonical Poisson bracket. When M is symplectic the resulting
Poisson algebra structure can be transferred via the symplectic form to the algebra of covariant
symmetric tensors. The resulting degree −1 pairing J · , · K : Sk(M) × Sl(M) → Sk+l−1(M) is
expressible in terms of any symplectic connection ∇ ∈ S(M,Ω) by

Jα, βKi1...ik+l−1
= −kαp(i1...ik−1

∇pβik...ik+l−1) + lβp(i1...il−1
∇pαil...ik+l−1). (3.7)

By the definition (3.7), the Schouten bracket of functions is trivial. In (3.7) the signs are chosen
so that JXg, Y gK = [X,Y ]g for X,Y ∈ Γ(TM). More generally, if X ∈ symp(M,Ω) then
JXg, αK = LXα. In particular, LHfα = Jα, dfK = Jδ∗f, αK for f ∈ C∞(M). Since symp(M,Ω) is
a Lie algebra, the Schouten bracket of closed one-forms is a closed one-form. The operator δ∗ is
a homomorphism from (C∞(M), { · , · }) to (ham(M,Ω), J · , · K), as

Jδ∗f, δ∗gK = Jdf, dgK = −d{f, g} = δ∗{f, g}, for f, g ∈ C∞(M). (3.8)

Since the pairing (3.7) does not depend on the choice of∇ ∈ S(M,Ω), it should be regarded as an
object of a differential topological character attached to the symplectic manifold. In particular,
the Schouten bracket is Symp(M,Ω)-equivariant. The corresponding infinitesimal statement,
the infinitesimal symplectomorphism equivariance of the Schouten bracket, is equivalent to
the statement that the Lie derivative LX along X ∈ symp(M,Ω) is a derivation of J · , · K.
Alternatively this is a consequence of the identity JXg, Jα, βKK = LXJα, βK in conjunction with
the Jacobi identity.

3.6. Two Lie brackets [ · , · ] and J · , · K on a vector space g are compatible if any linear combina-
tion of them is again a Lie bracket. For background on compatible Lie brackets see, for example,
[3, 4, 11], and the references therein. A straightforward computation shows that compatibility of
two Lie brackets is equivalent to the condition that each of the brackets is a cocyle with respect
to the other; this means J · , · K is a cocyle of the cochain complex of (g, [ · , · ]) with coefficients
in its adjoint representation, and likewise with [ · , · ] and J · , · K interchanged. From this second
characterization it follows that if one of two Lie brackets is a coboundary in the Lie algebra
cohomology of the other, then the brackets are compatible.

Lemma 3.5 gives an interpretation of δ∗ in terms of the Lie algebra cohomology of ( · , · ).

Lemma 3.5. Let (M,Ω) be a symplectic manifold. For ∇ ∈ S(M,Ω) the associated operator
δ∗ = δ∗∇ satisfies:

1. δ∗ is a derivation of the symmetric product �. That is,

δ∗(α� β) = δ∗α� β + α� δ∗β for α ∈ Sk(M) and β ∈ Sl(M).

2. The Schouten bracket J · , · K is the coboundary of δ∗ in the Lie algebra cochain complex of the
algebraic bracket ( · , · ) with coefficients in its adjoint representation. That is,

Jα, βK = (δ∗α, β) + (α, δ∗β)− δ∗(α, β) for α ∈ Sk(M) and β ∈ Sl(M). (3.9)

Consequently, the Schouten bracket J · , · K and the algebraic Lie bracket ( · , · ) are compatible
Lie brackets on Ŝ(M). Explicitly this means

0 = Cycle
α,β,γ

[(Jα, βK, γ) + J(α, β), γ)K]

= (Jα, βK, γ) + (Jβ, γK, α) + (Jγ, αK, β) + J(α, β), γK + J(β, γ), α)K + J(γ, α), βK. (3.10)
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3. For ∇̄ = ∇ + Πij
k ∈ S(M,Ω) the associated operator δ∗∇̄ is cohomologous to δ∗∇ in the Lie

algebra cochain complex of the algebraic bracket ( · , · ).
Proof. The identity (1) follows from a straightforward computation. The identity (2) follows
by comparing (3.7) with the identities

δ∗(α, β)i1...ik+l−1
= −kl

(
αp(i1...ik−1

∇ikβik+1...ik+l−1)
p − βp(i1...il−1

∇ilαil+1...ik+l−1)
p
)
,

(α, δ∗β)i1...ik+l−1
= −kαp(i1...ik−1

∇pβik...ik+l−1) − klαp(i1...ik−1
∇ikβik+1...ik+l−1)

p,

which follow straightforwardly from the definition (3.1). Since J · , · K is a coboundary with
respect to ( · , · ) it is automatically compatible with ( · , · ). By claim (2), δ∗∇̄ − δ∗∇ is closed
in the Lie algebra cochain complex of the algebraic bracket ( · , · ). For Π ∈ T∇S(M,Ω), ∇̄ =
∇+ Π,∇ ∈ S(M,Ω), and γ ∈ Sk(M), there holds

δ∗∇̄γi1...ik+1
= δ∗∇γi1...ik+1

+ 1
3(γ,Π)i1...ik+1

. (3.11)

The identity (3.11) means that δ∗∇̄ − δ
∗
∇ is exact, that is that δ∗∇̄ and δ∗∇ are cohomologous in

the Lie algebra cochain complex of the algebraic bracket ( · , · ). �

Lemma 3.6. For s, t ∈ R× let [ · , · ]s,t = s( · , · ) + tJ · , · K. If s, s̄, t, and t̄ are nonzero, the Lie

brackets [ · , · ]s,t and [ · , · ]s̄,t̄ on Ŝ(M) are isomorphic.

Proof. For m ∈ Z and t ∈ R×, define Θm
t : Ŝ(M) → Ŝ(M) by Θm

t (α)k = tk−mαk. The maps
Θm
t ∈ End(Ŝ(M)) are linear isomorphisms such that Θ2

t preserves ( · , · ) and Θ1
t preserves J · , · K.

For t, s ∈ R×, the linear isomorphism Ψs,t=Θ2
t−1◦Θ1

s satisfies [Ψs,t(α),Ψs,t(β)]1,1 =Ψs,t([α, β]s,t),

hence Ψs,t is an isomorphism from (Ŝ(M), [ · , · ]s,t) to (Ŝ(M), [ · , · ]1,1) if s, t ∈ R×. �

The brackets [ · , · ]s,t interpolate between ( · , · ) and J · , · K. Lemma 3.6 means that linear
combinations of ( · , · ) and J · , · K in which both brackets figure nontrivially are all isomorphic.
A convenient such linear combination is the bracket

[α, β] = (α, β) + Jα, βK. (3.12)

With respect to [ · , · ], the subspace Ŝ2(M) is a subalgebra of Ŝ(M), and the subspaces Ŝk(M) ⊂
Ŝ2(M) are Lie ideals. Since Ψs,t preserves the filtration of Ŝ(M) by the subspaces Ŝk(M),
these, and other similar, statements that depend only on the filtration, are valid also for the Lie
brackets [ · , · ]s,t.

Let αi ∈ Si(M) be the projection onto Si(M) of α ∈ Ŝ(M).

Lemma 3.7. Let (M,Ω) be a symplectic manifold. With respect to the bracket [ · , · ] of (3.12)
and the symmetric product �, the subspace

Ĥ(M) =
{
α ∈ Ŝ(M) : α1 = −δ∗α0

}
(3.13)

is a Poisson subalgebra of (Ŝ(M), [ · , · ]). For k ≥ 0, let Ĥk(M) = {α ∈ Ĥ(M) : αi = 0 if
i < k} (so Ĥk(M) = Ŝk(M) for k ≥ 2). For k ≥ 0 and l ≥ 2, [Ĥk(M), Ĥl(M)] ⊂ Ĥk+l−2(M).
In particular, for k ≥ 2, (Ĥk(M), [ · , · ],�) is a Poisson ideal in (Ĥ(M), [ · , · ],�). Define
π : Ĥ(M)→ C∞(M) by π(α) = −α0. The sequence

{0} −→
(
Ĥ2(M), [ · , · ],�

)
−→

(
Ĥ(M), [ · , · ],�

) π−→
(
C∞(M), { · , · }

)
−→ {0} (3.14)

of Poisson algebras is exact and ι : (C∞(M), { · , · }) → (Ĥ(M), [ · , · ]) defined by ι(f) = −f +
δ∗f is an injective Lie algebra homomorphism such that π ◦ ι is the identity. That is, the
sequence (3.14) splits and Ĥ(M) is the semidirect product of the Lie subalgebra

h(M) = ι
(
C∞(M)

)
=
{
α ∈ Ŝ(M) : α1 = −δ∗α0, αi = 0 for i ≥ 2

}
and the Poisson ideal Ĥ2(M).



Symmetries of the Space of Linear Symplectic Connections 13

Proof. Combining the k = 0 case of (3.7) and the k = 1 case of (3.1), shows that

Jf, αK = −kι(Hf )α = (δ∗f, α), for f ∈ C∞(M) and α ∈ Sk(M). (3.15)

Alternatively, (3.15) is a special case of (3.9). Let α, β ∈ Ĥ(M). By (3.15),

(α1, βj+1) + (αj+1, β1) + Jα0, βj+1K + Jαj+1, β0K
= −(δ∗α0, βj+1)− (αj+1, δ

∗β0) + Jα0, βj+1K + Jαj+1, β0K = 0, (3.16)

for all j ≥ 0. By (3.16),

[α, β]0 = (α1, β1) + Jα0, β1K + Jα1, β0K
= (δ∗α0, δ

∗β0)− Jα0, δ
∗β0K− Jδ∗α0, β0K = −(δ∗α0, δ

∗β0) = −{α0, β0}, (3.17)

and, by (3.16) and (3.8),

[α, β]1 = (α1, β2) + (α2, β1) + Jα0, β2K + Jα1, β1K + Jα2, β0K
= Jδ∗α0, δ

∗β0K = δ∗{α0, β0} = δ∗(δ∗α0, δ
∗β0) = −δ∗[α, β]0. (3.18)

By (3.17) and (3.18), (Ĥ(M), [ · , · ]) is a Lie subalgebra of (Ŝ(M), [ · , · ]) and Ĥ2(M) is a Lie ideal
of (Ĥ(M), [ · , · ]). That (Ĥ(M), [ · , · ],�) is a Poisson subalgebra of (Ŝ(M), [ · , · ],�) follows from

δ∗(α0β0) = −α0β1 − β0α1 = −(α� β)1.

Let α, β ∈ Ĥ(M) and let j ≥ 2. Then,

[α, β]j =

j+1∑
i=1

(αi, βj+2−i) +

j+1∑
i=0

Jαi, βj+1−iK =

j∑
i=2

(αi, βj+2−i) +

j∑
i=1

Jαi, βj+1−iK, (3.19)

where the second equality follows from (3.16). Suppose k ≥ 0, l ≥ 2, α ∈ Ĥk(M), and β ∈ Ĥl(M).
If j < k + l − 2 and i ≥ k then j + 1 − i < j + 2 − i ≤ j + 2 − k < l; hence every term in the
sums in the last line of (3.19) vanishes. This shows that [Ĥk(M), Ĥl(M)] ⊂ Ĥk+l−2(M). It also
follows from (3.19) that h(M) is a Lie subalgebra of (Ĥ(M), [ · , · ]). By (3.17),

π([α, β]) = −[α, β]0 = (δ∗α0, δ
∗β0) = {α0, β0} = Jπ(α), π(β)K,

so that π is a Lie algebra homomorphism. For f, g ∈ C∞(M), by (3.15) and (3.8),

[ι(f), ι(g)] = [−f + δ∗f,−g + δ∗g] = (δ∗f, δ∗g)− Jf, δ∗gK− Jδ∗f, gK + Jδ∗f, δ∗gK
= −(δ∗f, δ∗g) + δ∗{f, g} = −{f, g}+ δ∗{f, g} = ι({f, g}),

showing that h(M) = ι(C∞(M)) is a Lie subalgebra of (Ĥ(M), [ · , · ]) that is isomorphic to
(C∞(M), { · , · }). �

Lemma 3.8. Let (M,Ω) be a symplectic manifold. For a symplectic vector field X∈symp(M,Ω),

1) the Lie derivative LX along X is a derivation of the algebraic bracket ( · , · );

2) the operator I(X) : Ŝ(M) → Ŝ(M) defined by I(X)α = kι(X)α = −(Xg, α) for α ∈ Sk(M)
is a derivation of the Schouten bracket J · , · K.
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Proof. Let α = Xg, β ∈ Sk(M), and γ ∈ Sl(M). By (3.10) and the definition of I(X),

LX(β, γ)− (LXβ, γ)− (β,LXγ) = Jα, (β, γ)K− (Jα, βK, γ)− (β, Jα, γK)
= −(α, Jβ, γK) + J(α, β), γK + Jβ, (α, γ)K
= I(X)Jβ, γK− JI(X)β, γK− Jβ, I(X)γK. (3.20)

By (3.20), (1) and (2) are equivalent, so it suffices to prove either. As the claims are local in
nature, it can be assumed α is exact. Taking α = −δ∗f , for f ∈ C∞(M), in (3.20) yields,
by (3.15),

(δ∗f, Jβ, γK)− J(δ∗f, β), γK− Jβ, (δ∗f, γ)K = Jf, Jβ, γKK− JJf, βK, γK− Jβ, Jf, γKK = 0. �

Let πk : Ŝ(M)→ Ŝ(M) be the projection with image Ŝk(M) defined by πkα = α−
∑k−1

i=0 αi.

Define truncated brackets on Ŝ(M) by (α, β)(k) = (πkα, πkβ) and Jα, βK(k) = Jπkα, πkβK. If

k ≥ 2 then 2k − 2 ≥ k so (α, β)(k) ∈ Ŝk(M) and so πk(α, β)(k) = (α, β)(k); this identity suffices

to show that ( · , · )(k) satisfies the Jacobi identity, so is a Lie bracket on Ŝ(M). The same

argument shows that if k ≥ 1 then J · , · K(k) is a Lie bracket on Ŝ(M). If k ≥ 1 then Ŝk+1(M) is
an ideal with respect to each of the brackets J · , · K(k) and ( · , · )(k+1).

Lemma 3.9. Let (M,Ω) be a symplectic manifold. For k ≥ 1, the Lie brackets J · , · K(k) and

( · , · )(k+1) on Ŝk+1(M) are compatible.

Proof. For α, β ∈ Ŝk+1(M), by the definitions of J · , · K(k) and ( · , · )(k+1), and (3.9),

Jα, βK(k) = Jπkα, πkβK = (δ∗πkα, πkβ) + (πkα, δ
∗πkβ)− δ∗(πkα, πkβ)

= (πk+1δ
∗α, πk+1β) + (πk+1α, πk+1δ

∗β)− δ∗(πk+1α, πk+1β)

= (δ∗α, β)(k+1) + (α, δ∗β)(k+1) − δ∗(α, β)(k+1),

where the penultimate equality follows from δ∗πk = πk+1δ
∗ and πkπk+1 = πk+1 (since α ∈

Ŝk+1(M), the latter implies πkα = πk+1α). This shows that J · , · K(k) is a cocycle with respect
to ( · , · )(k+1). �

That an arbitrary vector field need not preserve Ω suggests working with the subspace Ẑ(M)
of Ŝ(M), the degree one part of which comprises closed one-forms on M (the symplectic dual
symp(M,Ω)g of symp(M,Ω)). (A related problem is that the ( · , · )-bracket of a closed one-form
with an element of S2(M) need not be a closed one-form.) Define

B̂(M) =
{
α ∈ Ŝ(M) : α1 is exact

}
⊂ Ẑ(M) =

{
α ∈ Ŝ(M) : dα1 = 0

}
. (3.21)

If α, β ∈ Ẑ(M) then Jα, βK(1) 1 = Jπ1α, π1βK1 = Jα1, β1K is closed, since the Schouten bracket

of closed one-forms is closed. Hence Ẑ(M) is a subalgebra of Ŝ(M) with respect to the bracket
J · , · K(1). If α, β ∈ Ẑ(M) then (α, β)(2) ∈ Ŝ2(M) = Ẑ(M) ∩ Ŝ2(M), so Ẑ(M) is a subalgebra

of Ŝ(M) with respect to the bracket ( · , · )(2).

Lemma 3.10. Let (M,Ω) be a symplectic manifold. The Lie brackets J · , · K(1) and ( · , · )(2)

on Ẑ(M) are compatible and B̂(M) is an ideal in Ẑ(M) with respect to each of J · , · K(1) and
( · , · )(2).

Proof. Let α, β, γ ∈ Ẑ(M). Then, using π1α = α1 + π2α,

Cycle
α,β,γ

(
(Jα, βK(1), γ)(2) + J(α, β)(2), γK(1)

)
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= Cycle
α,β,γ

(
(π2Jπ1α, π1βK, π2γ) + Jπ1(π2α, π2β), π1γK

)
= Cycle

α,β,γ
((π2Jα1 + π2α, β1 + π2βK, π2γ) + Jπ2(π2α, π2β), γ1 + π2γK)

= Cycle
α,β,γ

(
(Jπ2α, π2βK, π2γ) + J(π2α, π2β), π2γK + (π2Jα1, π2βK, π2γ)

+ (π2Jπ2α, β1K, π2γ) + (π2Jα1, β1K, π2γ) + Jπ2(π2α, π2β), γ1K
)

= Cycle
α,β,γ

(Jα1, π2βK, π2γ) + (Jπ2α, β1K, π2γ) + J(π2α, π2β), γ1K)

= Cycle
α,β,γ

(
(Lαf

1
π2β, π2γ) + (Lαf

1
π2β, π2γ)− Lαf

1
(π2β, π2γ)

)
= 0,

the last equality because, by Lemma 3.8, the Lie derivative along a symplectic vector field is
a derivation of the algebraic bracket ( · , · ). This shows J · , · K(1) and ( · , · )(2) are compatible. If

α ∈ B̂(M) and β ∈ Ẑ(M), then (α, β)(2) ∈ Ŝ2(M) ⊂ B̂(M), and there is f ∈ C∞(M) such that
α1 = −df , so that

Jα, βK(1) 1 = Jπ1α, π1βK1 = Jα1, β1K = Jβ1, dfK = Lβf
1
df = dLβf

1
f.

Hence Jα, βK ∈ B̂(M). �

By Lemma 3.10 the bracket

[ · , · ]> = ( · , · )(2) + J · , · K(1) (3.22)

(the subscript > is meant to suggest truncated) is a Lie bracket on Ẑ(M) and B̂(M) is an ideal
of (Ẑ(M), [ · , · ]>). Because [α, β]> ∈ Ŝ1(M) for all α, β ∈ Ẑ(M), Ẑ1(M) = Ẑ(M) ∩ Ŝ1(M) and
B̂1(M) = B̂(M) ∩ Ŝ1(M) are ideals in (Ẑ(M), [ · , · ]>).

Lemma 3.11 shows that the Lie algebra (Ĥ(M),[ · , · ]) is a central extension of (B̂1(M),[ · , · ]>).

Lemma 3.11. Let (M,Ω) be a symplectic manifold. The sequence

{0} −→ R
ι−→
(
Ĥ(M), [ · , · ]

) π1−→
(
B̂1(M), [ · , · ]>

)
−→ {0} (3.23)

of Lie algebras is exact, where ι(c) is the constant function on M equal to −c.

Proof. For α ∈ Ĥ(M), π1α = 0 if and only if αi = 0 for i ≥ 2 and α0 is constant. As π1 maps
Ĥ(M) surjectively onto B̂1(M), the content of the claim is that π1 is a Lie algebra homomor-
phism. Let α, β ∈ Ĥ(M). The identity (3.19) can be restated as

π2[α, β] = (π2α, π2β) + π2Jπ1α, π1βK = π2[α, β]>.

The identity (3.18) shows [α, β]1 = δ∗{α0, β0}. On the other hand,

[α, β]> 1 = (π2α, π2β)1 + Jπ1α, π1βK1 = Jα1, β1K
= Jδ∗α0, δ

∗β0K = δ∗{α0, β0} = [α, β]1.

Hence π1[α, β] = π1[α, β]> = [α, β]> = [π1α, π1β]>. �

The subspace Ŝ2(M) is a Lie ideal of each of (Ĥ(M), [ · , · ]) and (B̂(M), [ · , · ]>), and the
restrictions to Ŝ2(M) of the brackets [ · , · ] and [ · , · ]> coincide.
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4 Functionals on the symplectic affine space (S(M,Ω),
)
of symplectic connections

This section reviews the definitions and characterizations of the preferred and critical symplectic
connections.

4.1. The Lie derivative of the affine connection ∇ along X,

(LX∇)ij
k = ∇i∇jXk +XpRpij

k (4.1)

is defined to be the derivative at t = 0 of the pullback φ∗t∇ along the flow φt of X. Given ∇ ∈
S(M,Ω), define L = L∇ : Γ(T ∗M) → T∇S(M,Ω) by L(Xg)ijk = (LX∇)(ijk) for X ∈ Γ(TM).
Since 2(LX∇)i[jk] = ∇idXgjk,

(LX∇)ijk = (LX∇)(ijk) + 2
3∇(idX

g
j)k = L(Xg)ijk + 2

3∇(idX
g
j)k.

If X ∈ symp(M,Ω), then (LX∇)ijk is completely symmetric, so, in this case, L(Xg)ijk =
(LX∇)ijk. Define a linear operator S : S3(M)→ Γ(T ∗M) by S(β)i = βabcRiabc. The formal ad-
joint S∗ : Γ(T ∗M)→ S3(M) is S∗(α)ijk = −αpRp(ijk). For α ∈ Γ(T ∗M), L(α) can be rewritten as

L(α)ijk = ∇(i∇jαk) + αpRp(ijk) =
(
δ∗ 2α

)
ijk
− S∗(α)ijk.

The induced action of ham(M,Ω) on S(M,Ω) is given by H : C∞(M)→ T∇S(M,Ω) defined by

H(f) = LHf∇ = L(−df) = L(δ∗f) =
(
δ∗ 3f

)
− S∗(δ∗f).

Taking formal adjoints shows L∗ = −δ2 − S and H∗ = (Lδ∗)∗ = δL∗ = −δ3 − δS. Tracing (4.1)
and using the Ricci identity twice yields that, for ∇ ∈ S(M,Ω),

δL(Xg)ij = ∇p(LX∇)ij
p = ∇p∇i∇jXp +Xq∇pRqij p +Rqij

p∇pXq

= ∇i∇p∇jXp +Riq∇jXq + 2Xq∇[qRi]j

= ∇i∇j∇pXp +Rjq∇iXq +Riq∇jXq +Xq∇qRij + 2Xq∇iR[jq]

= (LXRic)ij . (4.2)

Taking X = Hf in (4.2) yields δH(f) = LHfRic.

4.2. The Cahen–Gutt moment map K : S(M,Ω)→ C∞(M) is defined by

K(∇) = −δ2Ric− 1
2R

ijRij + 1
4R

ijklRijkl = ∇i∇jRij − 1
2R

ijRij + 1
4R

ijklRijkl. (4.3)

The map K was defined by M. Cahen and S. Gutt in [7] (see also [2] or [13]), where it was shown
that K is a moment map for the action of Ham(M,Ω) on S(M,Ω). The map K(∇) has the form
required by Tamarkin’s theorem; its part quadratic in the curvature is a constant multiple of the
contraction of the first Pontryagin form p1(∇) of∇ with Ω2: K(∇) = −δ2Ric−(π2/2)p1(∇)p

p
q
q.

As a consequence, when M is compact the integral of K(∇) depends only on the cohomology
class [Ωn−2] of Ωn−2 and the first Pontryagin class [p1] of M ,

ˆ
M

K(∇) Ωn = −4π2

ˆ
M

p1 ∧ Ωn−2 = −4π2〈[p1] ∪ [Ωn−2], [M ]〉. (4.4)

(See [10] for details.) Since integration against fΩn defines a linear functional on ham(M,Ω)
for any f ∈ C∞(M), whatever is the precise meaning of the dual space ham(M,Ω)∗, this
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space contains ham(M,Ω) as a subspace. Hence K can be regarded as a map K : S(M,Ω) →
ham(M,Ω)∗.

The first variation δΠF(∇) of a functional F on S(M,Ω) at ∇ ∈ S(M,Ω) in the direction of
Π ∈ T∇S(M,Ω) is defined by δΠF(∇) = d

dt |t=0
F(∇+ tΠ). The essential content of Theorem 4.1

is that δΠK∇ = H∗∇(Π).

Theorem 4.1 (M. Cahen and S. Gutt, [7]). Let (M,Ω) be a symplectic manifold. The map
K : S(M,Ω)→ ham(M,Ω)∗ is a moment map for the action of Ham(M,Ω) on S(M,Ω), equiv-
ariant with respect to the actions of Symp(M,Ω).

Indication of proof. For a complete proof see [10]. Let R̄ijk
l be the curvature of ∇̄ = ∇ +

tΠij
k and label with a¯ the tensors derived from it; for example R̄ij is the Ricci curvature of ∇̄.

Let B(Π)ij = Πip
qΠjq

p and (Π∗Π)i = 3δB(Π)i −Πabc∇iΠabc. Then

R̄ijkl = Rijkl + 2t∇[iΠj]kl + 2t2Πpl[iΠj]k
p = Rijkl + td∇Πijkl + t2(Π ∧Π)ijkl, (4.5)

R̄ij = Rij + t∇pΠij
p − t2Πip

qΠjq
p = Rij + tδΠij − t2B(Π)ij , (4.6)

δ∗∇̄Ric = δ∗∇Ric + t
(
δ∗δΠ + 1

3(Ric,Π)
)

+ t2
(
−δ∗B(Π) + 1

3(δΠ,Π)
)
− 1

3 t
3(B(Π),Π), (4.7)

δ∇+tΠRic(∇+ tΠ)i = δ∇Rici − t(L∗(Π)i + T (Π)i)− t2 (δB(Π)i + Πi
pqδΠpq) +O

(
t3
)
, (4.8)

where T (β)i = βabc(Ri(abc) − Ωi(aRbc)) = βi
pqRpq + S(β)i. Combining (4.5)–(4.8) yields

K(∇+ tΠ) = K(∇) + tH∗(Π) + 1
2 t

2δ(Π∗Π) +O
(
t3
)
, (4.9)

For φ ∈ Symp(M,Ω), K(φ∗∇) = K(∇) ◦ φ, so 〈〈f ◦ φ,K(φ∗∇)〉〉 = 〈〈f,K(∇)〉〉. This shows K is
equivariant with respect to the action of Symp(M,Ω) on S(M,Ω) and its action on ham(M,Ω)∗

induced by its action on C∞(M). For ∇ ∈ S(M,Ω), Π ∈ T∇S(M,Ω), X ∈ symp(M,Ω), and
f ∈ C∞c (M) it follows from (4.9) that δΠK∇ = H∗∇(Π). Hence 
∇(H(f),Π) = 〈〈f,H∗(Π)〉〉 =
δΠ〈〈f,K(∇)〉〉, showing that K is a moment map. �

Lemma 4.2. For any f ∈ C4(R), the Hamiltonian vector field on (S(M,Ω),
) generated by
Ef (∇) =

´
M f(K(∇)) Ωn is HEf = −H(f ′(K(∇))).

Proof. Calculating the first variation δΠEf (∇) along Π ∈ T∇S(M,Ω) using (4.9) yields

δΠEf = 〈〈f ′(K(∇)),H∗(Π)〉〉 = 
∇(H(f ′(K(∇))),Π), (4.10)

from which the claim follows. �

A symplectic connection∇ ∈ S(M,Ω) is critical if it is a critical point, for arbitrary compactly
supported variations α ∈ S3(M), of E : S(M,Ω) → C∞(M) defined by E(∇) =

´
M K(∇)2 Ωn.

Motivation for studying critical connections is given in [10], where the author proposed this
notion.

Corollary 4.3 ([10]). A symplectic connection ∇∈S(M,Ω) is critical if and only if H(K(∇))=0.

4.3. Given ∇ ∈ S(M,Ω), there are written Rci
j for the Ricci endomorphism Ri

j and Rc◦k

for its kth power as a fiberwise endomorphism. Since (Rc◦k)ij = (−1)k+1(Rc◦k)ji, (Rc◦k)ij is
symmetric if k is odd, and skew-symmetric if k is even. In particular, tr Rc◦2k+1 = 0 and

tr Rc◦2k = −Rpq
(
Rc◦2k−1

)
pq

= (−1)kRi1i2R
i2i3Ri3i4 · · ·Ri2k−2i2k−1Ri2k−1i2kR

i2ki1 .

Remark 4.4. The functionals tr Rc◦s play a key role in the averaging procedure used in [9,
Section 2], where they are called cycles of length s.
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For 1 ≤ k and Ric◦kij = (Rc◦k)ij , define R(k) : S(M,Ω)→ R by

R(k)(∇) = − 1
2k

ˆ
M

tr
(
Rc◦2k

)
Ωn

= 1
2k

ˆ
M
Rpq
(
Rc◦2k−1

)
pq

Ωn = 1
2k
∇

(
Ric◦2k−1,Ric

)
. (4.11)

Lemma 4.5. The Hamiltonian vector field HR(k)
on (S(M,Ω),
) generated by R(k) is

HR(k)
(∇)abc = −δ∗Ric◦2k−1

abc = ∇(a

(
Rc◦2k−1

)
bc)
.

Proof. For Π ∈ T∇S(M,Ω), by (4.6) and (4.11),


∇(Π,HR(k)
) = δΠR(k)(∇) = − 1

2kδΠ

ˆ
M

tr
(
Rc◦2k

)
Ωn (4.12)

= 1
2kδΠ

ˆ
M
Rpq
(
Rc◦2k−1

)
pq

Ωn = 〈〈δΠ,Ric◦2k−1〉〉 = −
∇
(
Π, δ∗Ric◦2k−1

)
. �

Remark 4.6. Since, by definition, ∇ ∈ S(M,Ω) is preferred if it is critical for R(1), that is
a zero of HR(1)

, Lemma 4.5 suggests regarding the zeros of HR(k)
, for k > 1, as generalizations

of preferred symplectic connections.

Remark 4.7. For any Ψ ∈ Symp(M,Ω), it follows from K(Ψ∗∇) = K(∇) ◦ Ψ and the similar
equivariance of the Ricci tensor, that Eφ(Ψ∗∇) = Eφ(∇) and R(k)(Ψ

∗∇) = R(k)(∇). Conse-
quently, Eφ and R(k) are constant on Symp(M,Ω) orbits in S(M,Ω).

The Poisson bracket {{F ,G}} of functionals F and G on (S(M,Ω),
) is defined to be the
symplectic pairing

{{F ,G}} = 
(HF ,HG) (4.13)

of the Hamiltonian vector fields HF and HG generated by F and G.

Lemma 4.8. If (M,Ω) is compact, the functionals R(k) and Eφ on (S(M,Ω),
) Poisson com-
mute for any k ≥ 1 and any φ ∈ C4(R).

Proof. By definition of the Poisson bracket {{ · , · }} on (S(M,Ω),
), (4.2), and Lemma 4.2,

{{Eφ,R(k)}} = 
(HEφ ,HR(k)
) = 


(
H(φ′(K)), δ∗Ric◦2k−1

)
= −〈〈δH(φ′(K)),Ric◦2k−1〉〉 = −〈〈LHφ′(K)

Ric,Ric◦2k−1〉〉

=

ˆ
M

(LHφ′(K)
Ric)i

j
(
Rc◦2k−1

)
j
i Ωn = 1

2k

ˆ
M

LHφ′(K)

(
Rc◦2k

)
Ωn = 0,

the last equality because the integral of a divergence vanishes. �

Remark 4.9. It would be interesting to know what can be said about existence of solutions to
the Hamiltonian flows

d
dt∇(t) = cHR(k)

(∇(t)). (4.14)

Here ∇(t) is a path in S(M,Ω) and c ∈ R. By Lemma 4.8, E is constant along the flows (4.14).
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5 A symplectic affine action of (Ĥ(M), [ · , · ]) on (S(M,Ω),
)

5.1. Recall from Remark 3.3 that G(F) is the group of gauge transformations of the linear
symplectic frame bundle F → M . The action of G(F), by pullback, on principal connections
induce the right action, T(M,Ω) × G(F) → T(M,Ω), on the associated covariant derivatives
given by

g · ∇ = ∇+ (g−1)p
k∇igj p = ∇− gkp∇igjp, (5.1)

where giqgj
q = gi

pgj
qΩpq = Ωij and (g−1)ij = −gji. The covariant derivatives associated

with principal connections on F preserve the symplectic structure, but need not be torsion-
free, and the action of G(F) does not preserve the torsion, for, by (5.1), if ∇ is torsion-free,
then ∇g is torsion-free if and only if ∇[igj]

k = 0. This need not be true in general. The
action (5.1) is affine (as in Section 2.4). Its linear part L(g) : T∇T(M,Ω) → Tg·∇T(M,Ω)
is (L(g)Π)ijk = (g−1)pkΠiq

pgj
q = gj

pgk
qΠipq, and there follows 
(L(g)α, L(g)β) = 
(α, β),

showing that the action of G(F) on T(M,Ω) is symplectic affine. However, there is no obvious
way to modify the action of G(F) on T(M,Ω) to obtain an action on S(M,Ω).

5.2. The curvature is a moment map for the gauge group action on the space of principal
connections on a principal bundle over a symplectic manifold. This goes back to [1], where
this construction is used in the special case of a surface. In the present context this can be
realized concretely as follows. Given α ∈ S2(M), regarded as an element of the Lie algebra L(F)
of infinitesimal gauge transformations (see Remark 3.3), regard the curvature of ∇ ∈ T(M,Ω)
as a L(F)-valued two-form C and write tr(Cα) = Rijp

qαq
p for the two-form resulting from

tracing the composition of the curvature with the endomorphism αi
j . However the dual L(F)∗

is understood, it includes Ad(F)-valued 2n-forms.

Theorem 5.1. On a compact symplectic manifold (M,Ω), the map Γ: T(M,Ω)→ L(F)∗ defined
by Γ(∇) = C ∧ Ωn−1 is a moment map for the action of the gauge group G(F) on T(M,Ω).

Proof. By (2.1), Γ(∇) = 1
2Rp

p
ijΩn, so

〈〈Γ(∇), α〉〉 =

ˆ
M

tr(Cα) ∧ Ωn−1 = −1
2

ˆ
M
αijRp

p
ij Ωn, (5.2)

If ∇ is a connection preserving a volume form µ and having torsion τij
k, then the divergence

∇pXp defined by the connection and the divergence (LXµ)/µ defined by the volume form are
related by (LXµ)/µ = ∇pXp +Xpτpq

q. For ∇ ∈ T(M,Ω) there resultsˆ
M

(
∇pXp +Xpτpq

q
)

Ωn =

ˆ
M

LXΩn = 0. (5.3)

The first variation of the curvature of ∇ ∈ T(M,Ω) along Π ∈ T∇T(M,Ω) is (δΠR)ijkl =
d∇Πijkl + τij

pΠpkl. Note that 0 = dΩijk − 3∇[iΩjk] = τ[ijk]. Tracing this yields 2τip
p =

−τp p i. Viewing αij ∈ S2(M) as an element of L(F) and differentiating the action of exp(tα) on
T(M,Ω) yields the vector field Xα(∇) = d

dt t=0
(exp(−tα) ·∇) = −∇iαjk. Applying the preceding

observations to (5.2) and integrating by parts using (5.3) yields

δΠ〈〈Γ(∇), α〉〉 = −1
2δΠ

ˆ
M
αijRp

p
ij Ωn =

ˆ
M

(
αij∇pΠpij − 1

2τq
qpΠpijα

ij
)

Ωn

=

ˆ
M

(
Πijk∇iαjk −∇p

(
αijΠp

ij

)
− αijΠp

ijτpq
q
)

Ωn

=

ˆ
M

Πijk∇iαjk Ωn = −
(Xα,Π).
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This shows that Xα is the Hamiltonian vector field on T(M,Ω) generated by 〈〈Γ(∇), α〉〉. Since Γ
is by construction G(F)-equivariant, this shows Γ is a moment map. �

Lemma 5.2. For α ∈ S2(M), define Rα : S(M,Ω) → R by Rα(∇) = 〈〈α,Ric(∇)〉〉. For a com-
pactly supported α ∈ S2(M) the Hamiltonian vector field generated on (S(M,Ω),
) by Rα is
HRα = −δ∗α.

Proof. By (4.6), 
∇(Π,HRα) = δΠRα(∇) = 
∇(α, δ∇Π) = −
∇(Π, δ∗∇α). �

If ∇ ∈ S(M,Ω), then Γ(∇) = (1/2)Rp
p
ijΩn = RijΩn, because Rp

p
ij = 2Rij . (Note

that the identity Rp
p
ij = 2Rij fails for ∇ ∈ T(M,Ω) having nonvanishing torsion.) Hence,

by (5.2), 〈〈Γ(∇), α〉〉 = −〈〈α,Ric(∇)〉〉 for ∇ ∈ S(M,Ω). That is the restriction of −〈〈Γ(∇), α〉〉
to S(M,Ω) equals the functional Rα defined in Lemma 5.2. For Π ∈ Γ(T ∗M ⊗ S2(T ∗M)) let
Q(Π)ijk = Π(ijk) and Q⊥(Π)ijk = (Id−Q)(Π)ijk = 2

3(Πijk − Π(jk)i) be the projections onto
S3(M) and its complement. The Hamiltonian vector field HRα on S(M,Ω) is the projection
Q(−Xα) = δ∗α onto TS(M,Ω) of the Hamiltonian vector field of −〈〈Γ(∇), α〉〉 on T(M,Ω).

Recall from (4.13) the definition of the Poisson bracket {{ · , · }} on (S(M,Ω),
).

Lemma 5.3. Let (M,Ω) be a compact symplectic manifold. For α, β ∈ S2(M), the Poisson
bracket {{Rα,Rβ}} of Rα and Rβ is

{{Rα,Rβ}} = −2
3〈〈δα, δβ〉〉+ 1

3〈〈α ? β, C〉〉+ 1
3R(α,β),

where α ? β ∈ W2,2(T ∗M) is defined by (α ? β)ijkl = 2αk[iβj]l + 2αl[iβj]k = −(β ? α)ijkl. The
Hamiltonian vector field on (S(M,Ω),
) generated by {{Rα,Rβ}} is

H{{Rα,Rβ}} = −1
3(δ∗(α, β) + Jα, βK) = 1

3

(
HR(α,β)

− Jα, βK
)
. (5.4)

Proof. Since Cijkl ∈W2,2(T ∗M), the pairing (2.3) takes the form

〈〈α ? β, C〉〉 = 2

ˆ
M
αilβjkRijkl Ωn.

By (3.5) of Lemma 3.4,

δδ∗βij = −2
3δ
∗δβij − 2

3R
p

(ij)
qβpq + 1

3(β,Ric)ij . (5.5)

By definition of the Poisson bracket {{Rα,Rβ}}, Lemma 5.2, (5.5), and (3.4),

{{Rα,Rβ}} = 
(HRα ,HRβ ) = 〈〈δ∗α, δ∗β〉〉 = 〈〈α, δδ∗β〉〉

= −2
3〈〈α, δ

∗δβ〉〉 − 2
3

ˆ
M
Rp (ij)

qβpqα
ij Ωn + 1

3〈〈α, (β,Ric)〉〉

= −2
3〈〈δα, δβ〉〉+ 1

3〈〈α ? β, C〉〉+ 1
3〈〈(α, β),Ric〉〉. (5.6)

By the second equality of (5.6) combined with (3.11), (3.4), and (2) of Lemma 3.5,


(Π,H{{Rα,Rβ}}) = δΠ{{Rα,Rβ}} = 1
3〈〈(α,Π), δ∗β〉〉+ 1

3〈〈δ
∗α, (β,Π)〉〉

= 1
3〈〈(α, δ

∗β) + (δ∗α, β),Π〉〉 = −1
3〈〈Π, δ

∗(α, β) + Jα, βK〉〉,

which with Lemma 5.2 shows (5.4). �
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The flow of −Rα has the form ∇ → ∇ + sδ∗α. Lemma 5.3 can be viewed as showing
that π(α,∇) = α · ∇ = ∇ + sδ∗α does not define an affine action of (S2(M), ( · , · )) ' L(F)
on S(M,Ω), and that the obstruction is given by the Schouten bracket. For α, β ∈ S2(M),
using (3.9) and (3.11) yields

α · (β · ∇)− β · (α · ∇) = 1
3s

2 ((α, δ∗β) + (δ∗α, β)) = 1
3s

2 (δ∗(α, β) + Jα, βK)

= (α, β) · ∇ −∇+ 1
3s(s− 3)δ∗(α, β) + 1

3s
2Jα, βK.

Hence the closest α · ∇ comes to defining an affine action is when s = 3, in which case(
α · (β · ∇)− β · (α · ∇)

)
−
(
(α, β) · ∇ −∇

)
= 3Jα, βK. (5.7)

The identity (5.7) is essentially the same as (5.4). It yields a conceptual explanation of claim (2)
of Lemma 3.5, that the Schouten bracket is a coboundary with respect to the algebraic bracket
( · , · ), as it exhibits J · , · K as the obstruction to making (S2(M), ( · , · )) act on an affine space.
On the other hand, it means that (S2(M), ( · , · )) can be extended by S3(M), using J · , · K to
produce a Lie algebra acting on S(M,Ω). The idea developed in the remainder of this section and
in Section 6 is that, although L(F) does not act on S(M,Ω), and so Γ (and correspondingly Ric)
cannot be viewed as a moment map on S(M,Ω), the action of L(F) can be extended in such
a way that a functional on S(M,Ω) constructed from Ric yields a moment map for the action of
the extended Lie algebra on S(M,Ω), and the actions of ham(M,Ω) and L(F) can be combined
and further extended in such a way that a functional on S(M,Ω) constructed from K and Ric
yields a moment map for the action of the extended Lie algebra on S(M,Ω).

As a vector space S2(M)⊕S3(M) is identified with the quotient Ŝ2(M)/Ŝ4(M). Since Ŝ4(M)
is an ideal of the Lie algebra (Ŝ2(M), [ · , · ]) for the Lie bracket [ · , · ] defined in (3.12), this
bracket descends to a Lie bracket, also denoted [ · , · ], on S2(M)⊕ S3(M), given explicitly by

[α, β] = (α2, β2) + Jα2, β2K + (α2, β3)− (β2, α3) (5.8)

for α, β ∈ S2(M)⊕ S3(M). For α ∈ S2(M)⊕ S3(M) and ∇ ∈ S(M,Ω), setting

α · ∇ = ∇+ 3δ∗α2 + 3α3,

yields a symplectic affine action on S(M,Ω) of the Lie algebra (S2(M) ⊕ S3(M), [ · , · ]), where
[ · , · ] is the Lie bracket defined by (5.8). This is a special case of the more general Lemma 5.4.

Lemma 5.4. Let (M,Ω) be a symplectic manifold. Let (B̂1(M), [ · , · ]>) be the Lie algebra

defined by (3.21) and (3.22). The map πB̂ : B̂1(M)× S(M,Ω)→ S(M,Ω) defined by

πB̂(α,∇) = α · ∇ = ∇+ L∇(α1) + 3δ∗∇α2 + 3α3, (5.9)

for (α,∇) ∈ B̂1(M)×S(M,Ω), is a symplectic affine action of (B̂1(M), [ · , · ]>) on (S(M,Ω),
).
The stabilizer of ∇ ∈ S(M,Ω) is the Lie subalgebra

B̂1(M)∇ =
{
α ∈ B̂(M) : 3α3 = −L∇(α1)− 3δ∗∇α2

}
. (5.10)

Proof. Consider the more general map B̂1(M)× S(M,Ω)→ S(M,Ω) defined by

α · ∇ = ∇+ qL∇(α1) + rδ∗∇α2 + sα3, (5.11)

for q, r, s ∈ R. Let ρ : (B̂1(M), [ · , · ]>)→ aff(S(M,Ω)) be the associated map given by ρ(α)∇ =
α · ∇ −∇. From the identities

δ∗∇+Πα2 = δ∗∇α2 + 1
3(α2,Π),

L∇+Π(α1) = Lαf
1

(∇+ Π) = Lαf
1
∇+ Lαf

1
Π = L∇(α1) + Jα1,ΠK,
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(the first is (3.11)) it follows that the map α→ L(ρ(α)) associating with α the linear endomor-
phism

L(ρ(α))Π = qJα1,ΠK + r
3(α2,Π),

of S3(M), satisfies ρ(α)(∇+ Π)− ρ(α)∇ = L(ρ(α))Π. This shows that ρ(α) is an affine trans-
formation of S(M,Ω) with linear part L(ρ(α)), and so, by Lemma 2.1, α· is an affine action
with linear part L(α·) = Id +L(ρ(α)). By the symp(M,Ω)-equivariance of 
 and (3.4), for
Π,Υ ∈ T∇S(M,Ω),


ρ(α)∇(L(ρ(α))Π,Υ) + 
ρ(α)∇(Π, L(ρ(α))Υ)

= q (〈〈Jα1,ΠK,Υ〉〉+ 〈〈Π, Jα1,ΥK〉〉) + r
3 (〈〈(α2,Π),Υ〉〉+ 〈〈Π, (α2,Υ)〉〉) = 0.

This shows that ρ(α) is symplectic affine for all α ∈ B̂1(M). For α, β ∈ B̂1(M),

L(ρ(α))ρ(β)∇ = qJα1, ρ(β)∇K + r
3(α2, ρ(β)∇)

= qJα1, qL∇(β1) + rδ∗∇β2 + sβ3K + r
3(α2, qL∇(β1) + rδ∗∇β2 + sβ3)

= q2Jα1,L∇(β1)K + qr
(
Jα1, δ

∗
∇β2K + 1

3(α2,L∇(β1))
)

+ qsJα1, β3K + r2

3 (α2, δ
∗
∇β2) + rs

3 (α2, β3).

Hence

L(ρ(α))ρ(β)∇− L(ρ(β))ρ(α)∇ = q2
(
Jα1,L∇(β1)K + JL∇(α1), β1K

)
+ qr

(
Jα1, δ

∗
∇β2K + Jδ∗∇α2, β1K + 1

3(α2,L∇(β1)) + 1
3(L∇(α1), β2))

)
+ qs

(
Jα1, β3K + Jα3, β1K

)
+ r2

3

(
(α2, δ

∗
∇β2) + (δ∗∇α2, β2)

)
+ rs

3

(
(α2, β3) + (α3, β2)

)
. (5.12)

Since dα1 = 0 = dβ1, αf1 , β
f
1 ∈ symp(M,Ω), and

Jα1,L∇(β1)K + JL∇(α1), β1K = [Lαf
1
,Lβf

1
]∇ = L∇(Jα1, β1K). (5.13)

Using (5.13) and (3.9) to simplify (5.12) yields

L(ρ(α))ρ(β)∇− L(ρ(β))ρ(α)∇
= q2L∇(Jα1, β1K) + qr

(
Lαf

1
δ∗∇β2 − 1

3(β2,L∇(α1))− Lβf
1
δ∗∇α2 + 1

3(α2,L∇(β1))
)

+ qs
(
Jα1, β3K + Jα3, β1K

)
+ r2

3

(
Jα2, β2K + δ∗∇(α2, β2)

)
+ rs

3

(
(α2, β3) + (α3, β2)

)
. (5.14)

By (3.11), there holds δ∗φ∗t (∇)γ − δ
∗
∇γ = 1

3(γ, φ∗t∇ − ∇) for γ ∈ Sk(M) and the local flow φt

generated by Z ∈ symp(M,Ω). Since δ∗φ∗t (∇)γ = φ∗t (δ
∗
∇φ
∗
−t(γ)), differentiating at t = 0 yields

[LZ , δ
∗]γ = (LZδ

∗)γ = 1
3(γ,L(Zg)). (5.15)

Applying (5.15) to simplify (5.14) yields

L(ρ(α))ρ(β)∇− L(ρ(β))ρ(α)∇ = q2L∇(Jα1, β1K) + rδ∗∇
(
q
(
Jα1, β2K + Jα2, β1K

)
+ r

3(α2, β2)
)

+ qs
(
Jα1, β3K + Jα3, β1K

)
+ r2

3 Jα2, β2K + rs
3

(
(α2, β3) + (α3, β2)

)
.

Hence(
L(ρ(α))ρ(β)− L(ρ(β))ρ(α)− ρ([α, β]>

)
∇

= q(q − 1)L∇(Jα1, β1K) + rδ∗∇
(
(q − 1) (Jα1, β2K + Jα2, β1K) + r−3

3 (α2, β2)
)

+ (q − 1)s
(
Jα1, β3K + Jα3, β1K

)
+ ( r

2

3 − s)Jα2, β2K + s(r−3)
3

(
(α2, β3) + (α3, β2)

)
.

This vanishes if q = 1 and r = 3 = s. This yields (5.9) and shows that (5.9) defines a symplectic
affine action. That the stabilizer of ∇ ∈ S(M,Ω) has the form (5.10) is straightforward. �
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Corollary 5.5. Let (M,Ω) be a symplectic manifold. Let (Ĥ(M), [ · , · ]) be the Lie algebra

defined by (3.12) and (3.13). The map πĤ : Ĥ(M)× S(M,Ω)→ S(M,Ω) defined by

πĤ(α,∇) = α · ∇ = ∇+ L∇(α1) + 3δ∗∇α2 + 3α3 = ∇−H∇(α0) + 3δ∗∇α2 + 3α3, (5.16)

for α ∈ Ĥ(M) and ∇ ∈ S(M,Ω), is a symplectic affine action of (Ĥ(M), [ · , · ]) on (S(M,Ω),
).
The stabilizer of ∇ ∈ S(M,Ω) is the Lie subalgebra

Ĥ(M)∇ =
{
α ∈ Ĥ(M) : 3α3 = −L∇(α1)− 3δ∗∇α2

}
.

Proof. By definition πĤ = πB̂ ◦ (π1× IdS(M,∇)) where πB̂ is defined by (5.9). By Lemmas 3.11

and 5.4, πĤ is a symplectic affine action. �

Remark 5.6. Consider the more general map Ĥ(M)× S(M,Ω)→ S(M,Ω) defined by

α · ∇ = ∇+ pH∇(α0) + qL∇(α1) + rδ∗∇α2 + sα3, (5.17)

for p, q, r, s ∈ R. As in the proof of Lemma 5.4, it is straightforward to show that the associated
map ρ : (Ĥ(M), [ · , · ]) → aff(S(M,Ω)) given by ρ(α)∇ = α · ∇ − ∇ is a symplectic affine
transformation of S(M,Ω) with linear part

L(ρ(α))Π = pJδ∗∇α0,ΠK + qJα1,ΠK + r
3(α2,Π) = (q − p)Jα1,ΠK + r

3(α2,Π).

Arguing as in the proof of Lemma 5.4 shows directly that (5.17) defines a symplectic affine
action if q = p+ 1 and r = 3 = s. In this case, (5.17) has the form (5.16), whatever is the value
of p.

6 Hamiltonian action of the extended Lie algebra
on (S(M,Ω),
)

In this section M is supposed compact. This is needed only to guarantee convergence of the
integrals that appear. With appropriate qualifications, everything extends to noncompact M ,
but this requires fussing that would be distracting here.

6.1. A reference connection ∇0 ∈ S(M,Ω) and a fixed Π ∈ T∇0S(M,Ω) determine a function
�∇0,Π(∇) = 〈〈Π,∇ − ∇0〉〉 on S(M,Ω). Since δΥ�∇0,Π(∇) = 〈〈Π,Υ〉〉, the Hamiltonian vector
field H�(∇0,Π) = −Π is that generating the flow on S(M,Ω) given by translation by −tΠ.

Given p, q, r ∈ R, ∇0 ∈ S(M,Ω), and α ∈ Ĥ(M) define M
p,q,r
α : S(M,Ω)→ R by

Mp,q,r
α (∇) = p〈〈α0,K(∇)〉〉+ qRα2(∇) + r�∇0,α3(∇).

The dependence of Mp,q,r
α on the reference connection ∇0 is not indicated so that the notation

does not become too cluttered. By Theorem 4.1, Lemma 5.2, and the preceding paragraph, the
Hamiltonian vector field HM

p,q,r
α

generated on S(M,Ω) by M
p,q,r
α is

HM
p,q,r
α

= −pH(α0)− qδ∗α2 − rα3.

In the case p = −1, q = 3, and r = 3, there is written simply M for M−1,3,3. Lemma 6.2
computes the Poisson brackets {{Mα,Mβ}}. The following preliminary lemma is needed in its
proof.
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Lemma 6.1. Let (M,Ω) be a compact symplectic manifold. For ∇ = ∇0 + Πij
k,∇0 ∈ S(M,Ω),

α, β ∈ S2(M), and α ? β as defined in Lemma 5.3,

〈〈α ? β, C(∇)〉〉 − 2〈〈δ∇α, δ∇β〉〉 = 〈〈α ? β, C(∇0)〉〉 − 2〈〈δ∇0α, δ∇0β〉〉+ 〈〈Jα, βK,Π〉〉. (6.1)

Proof. For α, β ∈ S2(M), C(∇) = C(∇0) + d∇0Πijkl + 2Πpl[iΠj]k
p, by (4.5), so

〈〈α ? β, C(∇)〉〉 − 〈〈α ? β, C(∇0)〉〉 = 〈〈α ? β, d∇0Π + Π ∧Π〉〉.

Integrating by parts and using (δ∇0α,Π) = −3(δ∇0α)pΠijp and (3.7) yields

〈〈α ? β, d∇0Π〉〉 = −2
3〈〈(δ∇0α,Π), β〉〉+ 2

3〈〈α, (δ∇0β,Π)〉〉+ 〈〈Jα, βK,Π〉〉. (6.2)

For α, β ∈ S2(M),

αabβcdΠacpΠbd
p = αbaβdcΠacpΠbd

p = αabβcdΠbdpΠac
p = −αabβcdΠacpΠbd

p (6.3)

so that αabβcdΠacpΠbd
p = 0. By (6.3),

〈〈α ? β,Π ∧Π〉〉 = 1
2

ˆ
M

(α ? β)ijkl(Π ∧Π)ijkl Ωn = 2

ˆ
αabΠabpβ

cdΠcd
p Ωn. (6.4)

From

d∇α[ij]i1...ik−1
= d∇0α[ij]i1...,ik−1

− (k − 1)
(
Πi(i1

pαi2...ik−1)jp −Πj(i1
pαi2...ik−1)ip

)
,

there follows

δ∇αi1...ik−1
= δ∇0αi1...ik−1

+ (−1)k−1(k − 1)Πpq
(i1αi2...ik−1)pq. (6.5)

Computing using (6.5), (δ∇0α,Π) = −3(δ∇0α)pΠijp, and (6.4) yields

〈〈δ∇α, δ∇β〉〉 − 〈〈δ∇0α, δ∇0β〉〉
= −1

3〈〈(δ∇0α,Π), β〉〉+ 1
3〈〈α, (δ∇0β,Π)〉〉+ 1

2〈〈α ? β,Π ∧Π〉〉. (6.6)

Combining (6.2) and (6.6) yields (6.1). �

Lemma 6.2. Let (M,Ω) be a compact symplectic manifold and fix ∇0 ∈ S(M,Ω). Define
a skew-symmetric map Σ∇0 : Ĥ(M)× Ĥ(M)→ R by

Σ∇0(α, β) = 3〈〈α2 ? β2, C(∇0)〉〉 − 6〈〈δ∇0α2, δ∇0β2〉〉
− 3
(HMα(∇0), β3)− 3
(α3,HMβ

(∇0))− 9〈〈α3, β3〉〉. (6.7)

For α, β ∈ Ĥ(M), the Poisson brackets on (S(M,Ω),
) of Mα and Mβ satisfy

{{Mα,Mβ}} −M[α,β] = Σ∇0(α, β),

where Σ∇0(α, β) is regarded as a constant function on S(M,Ω).

Proof. First, there are made some general observations needed later in the proof. Differentia-
ting K(φ∗t∇) = K(∇) ◦ φt along the flow φt of X ∈ symp(M,Ω), and using (4.9) yields

H∗∇H∇(f) = {f,K(∇)}, 〈〈H∇(f),H∇(g)〉〉 = 〈〈f, {g,K(∇)}〉〉 = 〈〈{f, g},K(∇)〉〉, (6.8)
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for f, g,∈ C∞(M). Similarly, for f ∈ C∞(M) and α ∈ S2(M), by (4.2),

〈〈H∇(f), δ∗∇α〉〉 = −〈〈δ∇H∇(f), α〉〉 = −〈〈LHfRic(∇), α〉〉
= 〈〈Ric(∇),LHfα〉〉 = 〈〈Ric(∇), Jδ∗f, αK〉〉 = RJδ∗f,αK(∇). (6.9)

By definition of H∇, for f ∈ C∞(M) and α ∈ S3(M),

〈〈H∇(f), α〉〉 = 〈〈H∇0(f), α〉〉+ 〈〈Jδ∗f, αK,∇−∇0〉〉. (6.10)

By (3.11), for α2, β2 ∈ S2(M) and α3, β3 ∈ S3(M),

〈〈δ∗∇α2, β3〉〉+ 〈〈α3, δ
∗
∇β2〉〉

= 〈〈δ∗∇0
α2, β3〉〉+ 〈〈α3, δ

∗
∇0
β2〉〉+ 1

3〈〈(α2, β3) + (α3, β2),∇−∇0〉〉. (6.11)

For α, β ∈ Ĥ(M),

{{Mp,q,r
α ,Mp,q,r

β }}(∇) = 
∇(HM
p,q,r
α

,HM
p,q,r
β

)

= p2〈〈H∇(α0),H∇(β0)〉〉+ q2

3

(
〈〈α2 ? β2, C(∇)〉〉 − 2〈〈δ∇α2, δ∇β2〉〉+ R(α2,β2)(∇)

)
+ r2〈〈α3, β3〉〉+ pq

(
〈〈H∇(α0), δ∗∇β2〉〉+ 〈〈δ∗∇α2,H∇(β0)〉〉

)
+ pr (〈〈H∇(α0), β3〉〉+ 〈〈α3,H∇(β0)〉〉) + qr

(
〈〈δ∗∇α2, β3〉〉+ 〈〈α3, δ

∗
∇β2〉〉

)
. (6.12)

Simplifying (6.12) using (6.8), (6.9), (6.10), (6.1) of Lemma 6.1, (6.11), and Lemma 5.3 yields

{{Mp,q,r
α ,Mp,q,r

β }}(∇) = p2〈〈{α0, β0},K(∇)〉〉 − pqRJα1,β2K+Jα2,β1K(∇) + q2

3 R(α2,β2)(∇)

− pr�∇0,Jα1,β3K+Jα3,β1K(∇) + qr
3 �∇0,(α2,β3)+(α3,β2)(∇) + q2

3 �∇0,Jα2,β2K(∇)

+ r2〈〈α3, β3〉〉+ q2

3

(
〈〈α2 ? β2, C(∇0)〉〉 − 2〈〈δ∇0α2, δ∇0β2〉〉

)
+ pr

(
〈〈H∇0(α0), β3〉〉+ 〈〈α3,H∇0(β0)〉〉

)
+ qr

(
〈〈δ∗∇0

α2, β3〉〉+ 〈〈α3, δ
∗
∇0
β2〉〉

)
.

If p = −1, q = 3, and r = 3, then, writing M−1,3,3 = M,

{{Mα,Mβ}}(∇) = 〈〈{α0, β0},K(∇)〉〉+ 3RJα1,β2K+Jα2,β1K+(α2,β2)(∇)

+ 3�∇0,Jα1,β3K+Jα3,β1K+(α2,β3)+(α3,β2)+Jα2,β2K(∇)

+ 9〈〈α3, β3〉〉+ 3
(
〈〈α2 ? β2, C(∇0)〉〉 − 2〈〈δ∇0α2, δ∇0β2〉〉

)
− 3
(
〈〈H∇0(α0), β3〉〉+ 〈〈α3,H∇0(β0)〉〉

)
+ 9
(
〈〈δ∗∇0

α2, β3〉〉+ 〈〈α3, δ
∗
∇0
β2〉〉

)
= M[α,β](∇) + Σ∇0(α, β). �

Since M is not equivariant, the skew-symmetric map Σ∇0 : Ĥ(M)× Ĥ(M)→ R is a 2-cocycle,

the nonequivariance cocycle, for the Lie algebra cohomology of (Ĥ(M), [ · , · ]) with coefficients in
the trivial module R. The nonequivariance cocycles associated with different choices of reference
connection ∇0 ∈ S(M,Ω) are cohomologous. In what follows the dependence on the choice of ∇0

is sometimes suppressed, and there is written simply Σ instead of Σ∇0 . In a finite-dimensional
setting it follows from the definition that the nonequivariance cocycle of a weakly Hamiltonian
action is a constant function. In the infinite-dimensional setting here, the same conclusion would
follow from the definition (6.7), had adequate analytic foundations been laid. Although they
have not, Lemma 6.2 shows explicitly that {{Mα,Mβ}} −M[α,β] is constant on S(M,Ω).
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6.2. Because Ẑi(M) = Ẑ(M)∩ Ŝi(M) = Ŝi(M) is an ideal in (Ẑ1(M), [ · , · ]>) for any i ≥ 2, the
Lie bracket [ · , · ]> induces a Lie bracket (that will also be denoted [ · , · ]>) on the vector space
Ẑ1(M)/Ẑ4(M). As a vector space Ẑ1(M)/Ẑ4(M) is identified with symp(M,Ω)g ⊕ S2(M) ⊕
S3(M), and the Lie bracket is given explicitly by

[α, β]> = [αf1 , β
f
1 ]g + (α2, β2) + Lαf

1
β2 − Lβf

1
α2

+ (α2, β3) + (α3, β2) + Jα2, β2K + Lαf
1
β3 − Lβf

1
α3. (6.13)

Although (6.13) satisfies the Jacobi identity by construction, this can also be checked by tedious
computations using the compatibility and symp(M,Ω)-equivariance of ( · , · ) and J · , · K.

Since B̂4(M) = B̂(M) ∩ S4(M) satisfies B̂4(M) = Ẑ4(M) and B̂1(M) is a subalgebra of
(Ẑ1(M), [ · , · ]>), (B̂1(M)/B̂4(M), [ · , · ]>) is a Lie subalgebra of (Ẑ1(M)/Ẑ4(M), [ · , · ]>) and
the exact sequence (3.23) of Lemma 3.11 descends to give an exact sequence

{0} −→ R
ι−→
(
Ĥ(M)/Ĥ4(M), [ · , · ]

) π1−→
(
B̂1(M)/B̂4(M), [ · , · ]>

)
−→ {0}

of Lie algebras, where ι is the restriction to the constant functions R ⊂ C∞(M) of the map
ι : C∞(M) → Ĥ(M) defined by ι(f) = −f + δ∗f (see Lemma 3.7), and embeds R in Ĥ0(M) =
C∞(M) as the constant functions (but with a sign change). The bracket [ · , · ] descends to a Lie
bracket, also denoted [ · , · ] on the quotient Ĥ(M)/(ι(R)⊕Ĥ4(M)) by the Lie ideal ι(R)⊕Ĥ4(M).

For a compact symplectic manifold (M,Ω), the linear map c : (Ĥ(M), [ · , · ])→ R defined by

c(α) = volΩn(M)−1

ˆ
M
α0 Ωn = volΩn(M)−1〈〈α0, 1〉〉,

is a Lie algebra homomorphism because, by (3.17), [α, β]0 = −{α0, β0}, and the integral of
a Poisson bracket vanishes. Define ν : Ĥ(M) → Ĥ(M) by ν(α) = α + ι(c(α)) (so ν(α)0 =
α0 − c(α0)). Because ι(R) is central in (Ĥ(M), [ · , · ]), ν is a Lie algebra homomorphism of
(Ĥ(M), [ · , · ]). Because ν ◦ ν = ν, π1 ◦ ν = π1, and ker ν = ι(R), it follows that the maps ν
and π1 induce Lie algebra isomorphisms(

Ĥ(M)/
(
ι(R)⊕ Ĥ4(M)

)
, [ · , · ]

)
'
(
ν
(
Ĥ(M)

)
/Ĥ4(M), [ · , · ]

)
'
(
B̂1(M)/B̂4(M), [ · , · ]>

)
.

When M is compact, the Lie algebra ham(M,Ω) is isomorphic with the mean zero elements
of C∞(M) equipped with the Poisson bracket. It follows from Lemma 3.7 that the map Ĥ(M)→
h = ham(M,Ω)⊕ S2(M)⊕ S3(M) defined by α→ −α0 + α2 + α3 induces a linear isomorphism
Ĥ(M)/(ι(R)⊕ Ĥ4(M))→ h with inverse j : h→ Ĥ(M)/(ι(R)⊕ Ĥ4(M)) given by j(f +α2 +α3) =
ι(f) + α2 + α3 = −f + δ∗f + α2 + α3 ∈ Ĥ(M)/(ι(R) ⊕ Ĥ4(M)), and such that the pullback
via j of the Lie bracket [ · , · ], also to be written [ · , · ], agrees, when restricted to the subspace
ham(M,Ω), with the Poisson bracket.

Since for the symplectic affine action (5.16) the action of R⊕Ĥ4(M) is trivial, the action (5.16)
descends to a symplectic affine action of (Ĥ(M)/(ι(R)⊕ Ĥ4(M)), [ · , · ]) on S(M,Ω). Composing
with j yields a symplectic affine action of (h, [ · , · ]) on S(M,Ω). Precisely, the symplectic affine

action πh of α ∈ h on S(M,Ω) is defined to be πh(α,∇) = πĤ(j(α),∇); this makes sense
because Ĥ4(M) acts trivially on S(M,Ω). Lemma 6.3 summarizes the preceding as showing that
this action is weakly Hamiltonian. In the statement, the dual h∗ is identified with h via the
pairing 〈〈 · , · 〉〉. Precisely, the pairing 〈〈 · , · 〉〉 extends to elements α and β of Ŝ(M) (or of Ĥ(M)
or h) by linearity as 〈〈α, β〉〉 =

∑
k≥0〈〈αk, βk〉〉. Note that, if M is compact and α, β ∈ Ĥ(M),

then 〈〈α1, β1〉〉 = 〈〈δ∗α0, δ
∗β0〉〉 =

´
M{α0, β0}Ωn = 0. Since M is compact elements of the linear

duals of any of Ĥ(M), h, etc. can be identified with elements of the space itself via the pairing
〈〈 · , · 〉〉.
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Lemma 6.3. Let (M,Ω) be a compact symplectic manifold. The action πh of (h, [ · , · ]), on
S(M,Ω) induced by the symplectic affine action (5.16) is weakly Hamiltonian with (nonequiva-
riant) moment map M : S(M,Ω)→ h∗ given by

〈〈M(∇), α〉〉 = Mj(α)(∇) = 〈〈α0,K(∇)〉〉+ 3Rα2(∇) + 3�∇0,α3(∇),

for any fixed ∇0 ∈ S(M,Ω) and any α = α0 + α2 + α3 ∈ h.

Proof. By definition of the symplectic affine action πĤ, for α ∈ Ĥ(M),

HMα(∇) = H∇(α0)− 3δ∗∇α2 − 3α3 = d
dt

∣∣
t=0

πĤ(−tα,∇).

This shows that HMα is the vector field generated by the action of α on S(M,Ω), so M(∇) is

a (nonequivariant) moment map for the action of Ĥ(M) on S(M,Ω), and this action is weakly
Hamiltonian. The claim follows formally from the definitions of (h, [ · , · ]) and πh. �

Fix∇0 ∈ S(M,Ω). Define ĥ = C∞(M)⊕S2(M)⊕S3(M) and extend the pairing 〈〈 · , · 〉〉 to ĥ as
for h. The linear isomorphism j : h→ Ĥ(M)/(ι(R)⊕ Ĥ4(M)) lifts to a linear isomorphism ĵ : ĥ→
Ĥ(M)/Ĥ4(M) (defined in the same way as j, by ĵ(f+α2 +α3) = ι(f)+α2 +α3 ∈ Ĥ(M)/Ĥ4(M)).
As for j, the pullback to ĥ via ĵ of the Lie bracket [ · , · ], agains also to be written [ · , · ], agrees,
when restricted to the subspace C∞(M), with the Poisson bracket. Since Σ vanishes when
restricted to Ĥ4(M) in either argument, it can be viewed as a pairing on Ĥ(M)/Ĥ4(M), so it
makes sense to define a Lie bracket (( · , · )) on ĥ by

((α, β)) = [α, β] + Σ
(̂
j(α), ĵ(β)

)
, (6.14)

Here Σ is regarded as taking values in the subspace of constant functions R ⊂ C∞(M). Since
ι(R) = ker ν, ν descends from Ĥ(M) to give a Lie algebra homomorphism

ν :
(
Ĥ(M)/Ĥ4(M), [ · , · ]

)
→
(
Ĥ(M)/(ι(R)⊕ Ĥ4(M)), [ · , · ]

)
.

The linear map ν̄ : ĵ→ j defined by ĵ(f +α2 +α3) = f − c(f) +α2 +α3 satisfies j◦ ν̄ = ν ◦ ĵ, so is
a Lie algebra homomorphism ν̄ : (ĥ, (( · , · ))) → (h, [ · , · ]). In what follows it is convenient, and
should cause no confusion, to omit the bar and write simply ν in place of ν̄. The Lie algebra
(ĥ, (( · , · ))) is the central extension of (h, [ · , · ]) corresponding to the 2-cocycle Σ. Precisely, the
following sequence of Lie algebras is exact:

{0} −→ R −→
(
ĥ, (( · , · ))

) ν−→ (h, [ · , · ]) −→ {0}.

The action π̂ĥ(α,∇) of (ĥ, (( · , · ))) on S(M,Ω) is defined to be the action πh(ν(α),∇) of its
image via the projection ν, so that the center R of (ĥ, (( · , · ))) acts trivially.

Theorem 6.4. On a compact symplectic manifold (M,Ω), for any ∇0 ∈ S(M,Ω) the action
of (ĥ, (( · , · ))) on (S(M,Ω),
) is Hamiltonian, with equivariant moment map M̂ : S(M,Ω)→ ĥ∗

given by

〈〈M̂(∇), α〉〉 = 〈〈M(∇), ν(α)〉〉 − c(̂j(α)) = Mj◦ν(α)(∇)− c(̂j(α)) = Mj◦ν(α)(∇) + c(α0)

for any α = α0 + α2 + α3 ∈ ĥ, where M is determined by ∇0 as in Lemma 6.3.

Proof. Let α, β ∈ ĥ. It is convenient to write M̂α and Mν(α) in place of 〈〈M̂(∇), α〉〉 and
〈〈M(∇), ν(α)〉〉.
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By (4.4), when M is compact, the constant κ(M,Ω) =
´
M K(∇) Ωn does not depend on the

choice of ∇ ∈ S(M,Ω). For β ∈ Ĥ(M),

Mν(β)(∇)−Mβ(∇) = 〈〈c(β),K(∇)〉〉 = c(β)κ(M,Ω)

is a constant function on S(M,Ω). It follows that M̂α, Mν(α), and Mj◦ν(α) differ by constant
functions, so they generate on S(M,Ω) the same Hamiltonian vector field. This is the vector
field generated by the symplectic affine action of ν(α) on S(M,Ω), and this equals the lifted
action of α on S(M,Ω). This suffices to show that M̂ is a moment map for the action of
(ĥ, (( · , · ))) on S(M,Ω), provided the equivariance of M̂ can be shown.

For α, β ∈ Ĥ(M), since, in the definition (6.7) of Σ(α, β), there enter α0 and β0 only via HMα

and HMβ
, and, by the preceding remarks, these vector fields equal HMν(α)

and HMν(β)
, there

holds Σ(ν(α), ν(β)) = Σ(α, β).
For α, β ∈ ĥ, because [Ĥ(M), Ĥ(M)] ⊂ ker c,

c(̂j((α, β))) = c(̂j[α, β]) + c(̂j(Σ(̂j(α), ĵ(β))))

= c([̂j(α), ĵ(β)])− Σ(̂j(α), ĵ(β)) = −Σ(̂j(α), ĵ(β)). (6.15)

By the definitions of M̂ and Σ, for α, β ∈ ĥ,

{{M̂α, M̂β}} = {{Mν(α),Mν(β)}} = {{Mj◦ν(α),Mj◦ν(β)}}
= M[j◦ν(α),j◦ν(β)] + Σ(j ◦ ν(α), j ◦ ν(β)) = Mj([ν(α),ν(β)]) + Σ(ν ◦ ĵ(α), ν ◦ ĵ(β))

= Mj◦ν(((α,β))) + Σ(̂j(α), ĵ(β)) = Mj◦ν(((α,β))) − c(̂j((α, β))) = M̂((α,β)),

where the penultimate equality follows from (6.15). �

Viewed as a map taking values in the dual of Ĥ(M)/(ι(R) ⊕ Ĥ4(M)), the map M(∇) is
identified via 〈〈 · , · 〉〉 with the element

j (K(∇) + 3Ric(∇) + 3(∇−∇0)) = −K(∇) + δ∗K(∇) + 3Ric(∇) + 3(∇−∇0)

of Ĥ(M)/(ι(R)⊕ Ĥ4(M)), so the map M(∇) ∈ h∗ is identified via 〈〈 · , · 〉〉 with

K(∇) + 3Ric(∇) + 3(∇−∇0) ∈ h.

Similarly M̂(∇) ∈ ĥ∗ is identified with

M̂(∇) = volΩn(M)−1 + K̄(∇) + 3Ric(∇) + 3(∇−∇0) ∈ ĥ, (6.16)

where ĥ∗ is identified with ĥ using 〈〈 · , · 〉〉, K̄(∇) = K(∇) − κ(M,Ω) is the mean zero part
of K(∇), and the constant function volΩn(M)−1 is identified via 〈〈 · , · 〉〉 with the map f ∈
C∞(M)→ c(f).

On a compact symplectic manifold fix ∇0 ∈ S(M,Ω) with corresponding moment map
M̂ : S(M,Ω)→ ĥ∗ and define N : S(M,Ω)→ R by

N(∇) = 〈〈M̂(∇), M̂(∇)〉〉 = volΩn(M)−1
(
1− κ(M,Ω)2

)
+ E(∇) + 18R(1)(∇),

where E(∇) =
´
M K(∇)2Ωn and R(1) is defined in (4.11). By (4.10) and (4.12), the first variation

of N is

δΠN(∇) = 2
∇(H(K) + 9δ∗Ric,Π),

so the critical points of N are the solutions of H(K) + 9δ∗Ric = 0.
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6.3. For s, t ∈ R× let Ψs,t ∈ End(Ŝ(M)) be the linear automorphism defined in Lemma 3.6.

Note that, although Ψs,t does preserve B̂1(M), it does not preserve Ĥ(M). Rather, the subspace

Ĥs,t(M) = {α ∈ Ĥ(M) : sα1 = −tδ∗α0} is a subalgebra of (Ŝ(M), [ · , · ]s,t) and Ψs,t maps it

isomorphically onto Ĥ(M). Hence, composing πĤ with Ψs,t × IdS(M,Ω) yields a degenerated

symplectic affine action of (Ĥs,t(M), [ · , · ]s,t) on S(M,Ω) given by

πĤs,t(α,∇) = ∇+ tL∇(α1) + 3sδ∗∇α2 + 3t−1s2α3

= ∇− s−1t2H∇(α0) + 3sδ∗∇α2 + 3t−1s2α3.

These actions are all isomorphic as long as s and t are both nonzero. The extremal case
(s, t) = (0, 1) yields a symplectic affine action of (Ĥ(M), J · , · K) on S(M,Ω) that corresponds up
to a constant factor with the usual action of ham(M,Ω) on S(M,Ω). All the constructions made
starting from (Ĥ(M), [ · , · ]) can be repeated with (Ĥs,t(M), [ · , · ]s,t) in its place (this requires

modifying the maps j and ĵ). There results a moment map M̂s,t for a Lie bracket (( · , · ))s,t on ĥ.
However, it is easier, and equivalent, to introduce the parameters (s, t) at the end of the

construction, by viewing Ψs,t as a linear endomorphism of ĥ, and defining (( · , · ))s,t directly to
be the pullback of (( · , · )) via Ψs,t. Here there has to be made precise how to view Ψs,t as an

endomorphism of ĥ. It is simpler still to work with a modified map ψs,t : ĥ → ĥ defined by
ψs,t(α0 + α2 + α3) = tα0 + sα2 + t−1s2α3, and to define (( · , · ))s,t to be the pullback of (( · , · ))
via ψs,t The composed action πĥ ◦ (ψs,t × Id

ĥ
) of (ĥ, (( · , · ))s,t) is symplectic affine, and the

corresponding moment map M̂s,t : S(M,Ω) → ĥ∗ is M̂s,t = ψ∗s,t ◦ M̂ where ψ∗s,t ∈ End(ĥ∗) is the
linear dual of ψs,t. The corresponding quadratic functional Ns,t(∇) is

Ns,t(∇) = 〈〈M̂s,t,u(∇), M̂s,t,u(∇)〉〉
= t2volΩn(M)−1

(
1− κ(M,Ω)2 + t2E(∇) + 18s2R(1)(∇)

)
. (6.17)

By (4.10) and (4.12), the first variation of Ns/3,t is

δΠNs/3,t(∇) = 2
∇
(
t2H(K) + s2δ∗Ric,Π

)
,

so the critical points of Ns/3,t are the solutions of (1.2).

Acknowledgements I thank the anonymous referees for their thoughtful criticisms and de-
tailed corrections which helped improve the article, particularly the exposition in Section 6.
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