|
SIGMA 12 (2016), 115, 20 pages arXiv:1606.07649
https://doi.org/10.3842/SIGMA.2016.115
Un-Reduction of Systems of Second-Order Ordinary Differential Equations
Eduardo García-Toraño Andrés a and Tom Mestdag b
a) Departamento de Matemática, Universidad Nacional del Sur, CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
b) Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020 Antwerpen, Belgium
Received August 12, 2016, in final form November 29, 2016; Published online December 07, 2016
Abstract
In this paper we consider an alternative approach to ''un-reduction''. This is the process where one associates to a Lagrangian system on a manifold a dynamical system on a principal bundle over that manifold, in such a way that solutions project. We show that, when written in terms of second-order ordinary differential equations (SODEs), one may associate to the first system a (what we have called) ''primary un-reduced SODE'', and we explain how all other un-reduced SODEs relate to it. We give examples that show that the considered procedure exceeds the realm of Lagrangian systems and that relate our results to those in the literature.
Key words:
reduction; symmetry; principal connection; second-order ordinary differential equations; Lagrangian system.
pdf (435 kb)
tex (50 kb)
References
-
Arnaudon A., Castrillón López M., Holm D.D., Covariant un-reduction for curve matching, arXiv:1508.05325.
-
Arnaudon A., Castrillón López M., Holm D.D., Un-reduction in field theory, with applications, arXiv:1509.06919.
-
Arnol'd V.I., Mathematical methods of classical mechanics, Graduate Texts in Mathematics, Vol. 60, 2nd ed., Springer-Verlag, New York, 1989.
-
Bauer M., Bruveris M., Michor P.W., Overview of the geometries of shape spaces and diffeomorphism groups, J. Math. Imaging Vision 50 (2014), 60-97, arXiv:1305.1150.
-
Bruveris M., Ellis D.C.P., Holm D.D., Gay-Balmaz F., Un-reduction, J. Geom. Mech. 3 (2011), 363-387, arXiv:1012.0076.
-
Cendra H., Marsden J.E., Ratiu T.S., Lagrangian reduction by stages, Mem. Amer. Math. Soc. 152 (2001), x+108 pages.
-
Cotter C.J., Holm D.D., Geodesic boundary value problems with symmetry, J. Geom. Mech. 2 (2010), 51-68, arXiv:0911.2205.
-
Crampin M., Mestdag T., Routh's procedure for non-abelian symmetry groups, J. Math. Phys. 49 (2008), 032901, 28 pages, arXiv:0802.0528.
-
de León M., Marrero J.C., Martínez E., Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen. 38 (2005), R241-R308, math.DG/0407528.
-
Ehlers K., Koiller J., Montgomery R., Rios P.M., Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization, in The Breadth of Symplectic and Poisson Geometry, Progr. Math., Vol. 232, Birkhäuser Boston, Boston, MA, 2005, 75-120, math-ph/0408005.
-
Kolář I., Michor P.W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993.
-
Kossowski M., Thompson G., Submersive second order ordinary differential equations, Math. Proc. Cambridge Philos. Soc. 110 (1991), 207-224.
-
Mestdag T., Crampin M., Invariant Lagrangians, mechanical connections and the Lagrange-Poincaré equations, J. Phys. A: Math. Theor. 41 (2008), 344015, 20 pages, arXiv:0802.0146.
-
Nomizu K., Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
-
O'Neill B., Semi-Riemannian geometry: with applications to relativity, Pure and Applied Mathematics, Vol. 103, Academic Press, Inc., New York, 1983.
-
Sarlet W., Prince G.E., Crampin M., Generalized submersiveness of second-order ordinary differential equations, J. Geom. Mech. 1 (2009), 209-221.
-
Thompson G., Variational connections on Lie groups, Differential Geom. Appl. 18 (2003), 255-270.
-
Vilms J., Connections on tangent bundles, J. Differential Geometry 1 (1967), 235-243.
-
Yano K., Ishihara S., Tangent and cotangent bundles: differential geometry, Pure and Applied Mathematics, Vol. 16, Marcel Dekker, Inc., New York, 1973.
|
|