Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 081, 7 pages      arXiv:1606.06474      https://doi.org/10.3842/SIGMA.2016.081

Born-Jordan and Weyl Quantizations of the 2D Anisotropic Harmonic Oscillator

Giovanni Rastelli
Dipartimento di Matematica, Università di Torino, Torino, via Carlo Alberto 10, Italy

Received July 15, 2016, in final form August 15, 2016; Published online August 17, 2016

Abstract
We apply the Born-Jordan and Weyl quantization formulas for polynomials in canonical coordinates to the constants of motion of some examples of the superintegrable 2D anisotropic harmonic oscillator. Our aim is to study the behaviour of the algebra of the constants of motion after the different quantization procedures. In the examples considered, we have that the Weyl formula always preserves the original superintegrable structure of the system, while the Born-Jordan formula, when producing different operators than the Weyl's one, does not.

Key words: Born-Jordan quantization; Weyl quantization; superintegrable systems; extended systems.

pdf (275 kb)   tex (11 kb)

References

  1. Ballesteros Á., Enciso A., Herranz F.J., Ragnisco O., Riglioni D., Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability, Ann. Physics 326 (2011), 2053-2073, arXiv:1102.5494.
  2. Ballesteros Á., Herranz F.J., Kuru Ş., Negro J., The anisotropic oscillator on curved spaces: a new exactly solvable model, Ann. Physics 373 (2016), 399-423, arXiv:1605.02384.
  3. Born M., Jordan P., Zur Quantenmechanik, Z. Phys. 34 (1925), 858-888.
  4. Born M., Heisenberg W., Jordan P., Zur Quantenmechanik. II, Z. Phys. 35 (1925), 557-615.
  5. Celeghini E., Kuru Ş., Negro J., del Olmo M.A., A unified approach to quantum and classical TTW systems based on factorizations, Ann. Physics 332 (2013), 27-37.
  6. Chanu C., Degiovanni L., Rastelli G., Generalizations of a method for constructing first integrals of a class of natural Hamiltonians and some remarks about quantization, J. Phys. Conf. Ser. 343 (2012), 012101, 15 pages, arXiv:1111.0030.
  7. Chanu C.M., Degiovanni L., Rastelli G., Extensions of Hamiltonian systems dependent on a rational parameter, J. Math. Phys. 55 (2014), 122703, 11 pages, arXiv:1310.5690.
  8. Chanu C.M., Degiovanni L., Rastelli G., The Tremblay-Turbiner-Winternitz system as extended Hamiltonian, J. Math. Phys. 55 (2014), 122701, 8 pages, arXiv:1404.4825.
  9. de Gosson M.A., Born-Jordan quantization. Theory and applications, Fundamental Theories of Physics, Vol. 182, Springer, Cham, 2016.
  10. Duval C., Valent G., Quantum integrability of quadratic Killing tensors, J. Math. Phys. 46 (2005), 053516, 22 pages, math-ph/0412059.
  11. Jauch J.M., Hill E.L., On the problem of degeneracy in quantum mechanics, Phys. Rev. 57 (1940), 641-645.
  12. Miller Jr. W., Post S., Winternitz P., Classical and quantum superintegrability with applications, J. Phys. A: Math. Theor. 46 (2013), 423001, 97 pages, arXiv:1309.2694.
  13. Post S., Winternitz P., General $N$th order integrals of motion in the Euclidean plane, J. Phys. A: Math. Theor. 48 (2015), 405201, 24 pages, arXiv:1501.00471.
  14. Weyl H., Quantenmechanik und Gruppentheorie, Z. Phys. 46 (1927), 1-46.
  15. Weyl H., The theory of groups and quantum mechanics, Dover, New York, 1950.

Previous article  Next article   Contents of Volume 12 (2016)