|
SIGMA 12 (2016), 065, 15 pages arXiv:1604.03070
https://doi.org/10.3842/SIGMA.2016.065
Contribution to the Special Issue on Asymptotics and Universality in Random Matrices, Random Growth Processes, Integrable Systems and Statistical Physics in honor of Percy Deift and Craig Tracy
A Vector Equilibrium Problem for Muttalib-Borodin Biorthogonal Ensembles
Arno B.J. Kuijlaars
Katholieke Universiteit Leuven, Department of Mathematics, Celestijnenlaan 200B box 2400, BE-3001 Leuven, Belgium
Received April 12, 2016, in final form July 03, 2016; Published online July 05, 2016
Abstract
The Muttalib-Borodin biorthogonal ensemble is a joint density function for $n$ particles on the positive real line that depends on a parameter $\theta$. There is an equilibrium problem that describes the large $n$ behavior. We show that for rational values of $\theta$ there is an equivalent vector equilibrium problem.
Key words:
biorthogonal ensembles; vector equilibrium problem; random matrix theory; logarithmic potential theory.
pdf (373 kb)
tex (19 kb)
References
-
Aptekarev A.I., Kuijlaars A.B.J., Hermite-Padé approximations and ensembles of multiple orthogonal polynomials, Russ. Math. Surv. 66 (2011), 1133-1199.
-
Beckermann B., Kalyagin V., Matos A.C., Wielonsky F., Equilibrium problems for vector potentials with semidefinite interaction matrices and constrained masses, Constr. Approx. 37 (2013), 101-134, arXiv:1105.3088.
-
Bloom T., Levenberg N., Totik V., Wielonsky F., Modified logarithmic potential theory and applications, Int. Math. Res. Not., to appear, arXiv:1502.06925.
-
Borodin A., Biorthogonal ensembles, Nuclear Phys. B 536 (1999), 704-732, math.CA/9804027.
-
Butez R., Large deviations principle for biorthogonal ensembles and variational formulation for the Dykema-Haagerup distribution, arXiv:1602.07201.
-
Cheliotis D., Triangular random matrices and biorthogonal ensembles, arXiv:1404.4730.
-
Claeys T., Romano S., Biorthogonal ensembles with two-particle interactions, Nonlinearity 27 (2014), 2419-2444, arXiv:1312.2892.
-
Deift P., Kriecherbauer T., McLaughlin K.T.-R., New results on the equilibrium measure for logarithmic potentials in the presence of an external field, J. Approx. Theory 95 (1998), 388-475.
-
Duits M., Kuijlaars A.B.J., An equilibrium problem for the limiting eigenvalue distribution of banded Toeplitz matrices, SIAM J. Matrix Anal. Appl. 30 (2008), 173-196, arXiv:0704.0378.
-
Eichelsbacher P., Sommerauer J., Stolz M., Large deviations for disordered bosons and multiple orthogonal polynomial ensembles, J. Math. Phys. 52 (2011), 073510, 16 pages, arXiv:1102.0792.
-
Forrester P.J., Liu D.-Z., Raney distributions and random matrix theory, J. Stat. Phys. 158 (2015), 1051-1082, arXiv:1404.5759.
-
Forrester P.J., Liu D.-Z., Zinn-Justin P., Equilibrium problems for Raney densities, Nonlinearity 28 (2015), 2265-2277, arXiv:1411.4091.
-
Forrester P.J., Wang D., Muttalib-Borodin ensembles in random matrix theory - realisations and correlation functions, arXiv:1502.07147.
-
Hardy A., Kuijlaars A.B.J., Weakly admissible vector equilibrium problems, J. Approx. Theory 164 (2012), 854-868, arXiv:1110.6800.
-
Kuijlaars A.B.J., Multiple orthogonal polynomial ensembles, in Recent Trends in Orthogonal Polynomials and Approximation Theory, Contemp. Math., Vol. 507, Amer. Math. Soc., Providence, RI, 2010, 155-176, arXiv:0902.1058.
-
Kuijlaars A.B.J., Stivigny D., Singular values of products of random matrices and polynomial ensembles, Random Matrices Theory Appl. 3 (2014), 1450011, 22 pages, arXiv:1404.5802.
-
Muttalib K.A., Random matrix models with additional interactions, J. Phys. A: Math. Gen. 28 (1995), L159-L164, cond-mat/9405084.
-
Neuschel T., Van Assche W., Asymptotic zero distribution of Jacobi-Piñeiro and multiple Laguerre polynomials, J. Approx. Theory 205 (2016), 114-132, arXiv:1509.04542.
-
Nikishin E.M., Sorokin V.N., Rational approximations and orthogonality, Translations of Mathematical Monographs, Vol. 92, Amer. Math. Soc., Providence, RI, 1991.
-
Saff E.B., Totik V., Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften, Vol. 316, Springer-Verlag, Berlin, 1997.
|
|