|
SIGMA 12 (2016), 063, 12 pages arXiv:1602.03693
https://doi.org/10.3842/SIGMA.2016.063
Symmetries of Lorentzian Three-Manifolds with Recurrent Curvature
Giovanni Calvaruso a and Amirhesam Zaeim b
a) Dipartimento di Matematica e Fisica ''E. De Giorgi'', Università del Salento, Prov. Lecce-Arnesano, 73100 Lecce, Italy
b) Department of Mathematics, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran
Received February 12, 2016, in final form June 17, 2016; Published online June 26, 2016
Abstract
Locally homogeneous Lorentzian three-manifolds with recurrect curvature are special examples of Walker manifolds, that is, they admit a parallel null vector field. We obtain a full classification of the symmetries of these spaces, with particular regard to symmetries related to their curvature: Ricci and matter collineations, curvature and Weyl collineations. Several results are given for the broader class of three-dimensional Walker manifolds.
Key words:
Walker manifolds; Killing vector fields; affine vector fields; Ricci collineations; curvature and Weyl collineations; matter collineations.
pdf (320 kb)
tex (17 kb)
References
-
Aichelburg P.C., Curvature collineations for gravitational ${\rm pp}$ waves, J. Math. Phys. 11 (1970), 2458-2462.
-
Alekseevski D., Self-similar Lorentzian manifolds, Ann. Global Anal. Geom. 3 (1985), 59-84.
-
Batat W., Calvaruso G., De Leo B., Homogeneous Lorentzian 3-manifolds with a parallel null vector field, Balkan J. Geom. Appl. 14 (2009), 11-20.
-
Beem J.K., Proper homothetic maps and fixed points, Lett. Math. Phys. 2 (1978), 317-320.
-
Brozos-Vázquez M., García-Río E., Gilkey P., Nikčević S., Vázquez-Lorenzo R., The geometry of Walker manifolds, Synthesis Lectures on Mathematics and Statistics, Vol. 5, Morgan & Claypool Publishers, Williston, VT, 2009.
-
Calvaruso G., Zaeim A., Invariant symmetries on non-reductive homogeneous pseudo-Riemannian four-manifolds, Rev. Mat. Complut. 28 (2015), 599-622.
-
Calvaruso G., Zaeim A., Geometric structures over four-dimensional generalized symmetric spaces, Collect. Math., to appear.
-
Calviño-Louzao E., Seoane-Bascoy J., Vázquez-Abal M.E., Vázquez-Lorenzo R., Invariant Ricci collineations on three-dimensional Lie groups, J. Geom. Phys. 96 (2015), 59-71.
-
Camci U., Hussain I., Kucukakca Y., Curvature and Weyl collineations of Bianchi type V spacetimes, J. Geom. Phys. 59 (2009), 1476-1484.
-
Camci U., Sharif M., Matter collineations of spacetime homogeneous Gödel-type metrics, Classical Quantum Gravity 20 (2003), 2169-2179, gr-qc/0306129.
-
Carot J., da Costa J., Vaz E.G.L.R., Matter collineations: the inverse ''symmetry inheritance'' problem, J. Math. Phys. 35 (1994), 4832-4838.
-
Chaichi M., García-Río E., Vázquez-Abal M.E., Three-dimensional Lorentz manifolds admitting a parallel null vector field, J. Phys. A: Math. Gen. 38 (2005), 841-850.
-
Flores J.L., Parra Y., Percoco U., On the general structure of Ricci collineations for type B warped space-times, J. Math. Phys. 45 (2004), 3546-3557, gr-qc/0405133.
-
García-Río E., Gilkey P.B., Nikčević S., Homogeneity of Lorentzian three-manifolds with recurrent curvature, Math. Nachr. 287 (2014), 32-47, arXiv:1210.7764.
-
Hall G., Symmetries of the curvature, Weyl conformal and Weyl projective tensors on 4-dimensional Lorentz manifolds, in Proceedings of the International Conference ''Differential Geometry - Dynamical Systems'' (DGDS-2007), BSG Proc., Vol. 15, Geom. Balkan Press, Bucharest, 2008, 89-98.
-
Hall G.S., Symmetries and curvature structure in general relativity, World Scientific Lecture Notes in Physics, Vol. 46, World Scientific Publishing Co., Inc., River Edge, NJ, 2004.
-
Hall G.S., Capocci M.S., Classification and conformal symmetry in three-dimensional space-times, J. Math. Phys. 40 (1999), 1466-1478.
-
Hall G.S., Low D.J., Pulham J.R., Affine collineations in general relativity and their fixed point structure, J. Math. Phys. 35 (1994), 5930-5944.
-
Hall G.S., Roy I., Vaz E.G.L.R., Ricci and matter collineations in space-time, Gen. Relativity Gravitation 28 (1996), 299-310.
-
Kühnel W., Rademacher H.-B., Conformal Ricci collineations of space-times, Gen. Relativity Gravitation 33 (2001), 1905-1914.
-
Levichev A.V., Methods for studying the causal structure of homogeneous Lorentz manifolds, Sib. Math. J. 31 (1990), 395-408.
-
Tsamparlis M., Apostolopoulos P.S., Ricci and matter collineations of locally rotationally symmetric space-times, Gen. Relativity Gravitation 36 (2004), 47-69, gr-qc/0309034.
-
Walker A.G., On parallel fields of partially null vector spaces, Quart. J. Math. Oxford Ser. 20 (1949), 135-145.
|
|