Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 12 (2016), 030, 23 pages      arXiv:1504.07165      https://doi.org/10.3842/SIGMA.2016.030

Polynomial Invariants for Arbitrary Rank $D$ Weakly-Colored Stranded Graphs

Remi Cocou Avohou
International Chair in Mathematical Physics and Applications, ICMPA-UNESCO Chair, 072BP50, Cotonou, Republic of Benin

Received June 26, 2015, in final form March 14, 2016; Published online March 22, 2016

Abstract
Polynomials on stranded graphs are higher dimensional generalization of Tutte and Bollobás-Riordan polynomials [Math. Ann. 323 (2002), 81-96]. Here, we deepen the analysis of the polynomial invariant defined on rank 3 weakly-colored stranded graphs introduced in arXiv:1301.1987. We successfully find in dimension $D\geq3$ a modified Euler characteristic with $D-2$ parameters. Using this modified invariant, we extend the rank 3 weakly-colored graph polynomial, and its main properties, on rank 4 and then on arbitrary rank $D$ weakly-colored stranded graphs.

Key words: Tutte polynomial; Bollobás-Riordan polynomial; graph polynomial invariant; colored graph; Ribbon graph; Euler characteristic.

pdf (661 kb)   tex (206 kb)

References

  1. Avohou R.C., Ben Geloun J., Hounkonnou M.N., A polynomial invariant for rank 3 weakly-colored stranded graphs, arXiv:1301.1987.
  2. Avohou R.C., Ben Geloun J., Livine E.R., On terminal forms for topological polynomials for ribbon graphs: the $N$-petal flower, European J. Combin. 36 (2014), 348-366, arXiv:1212.5961.
  3. Ben Geloun J., Krajewski T., Magnen J., Rivasseau V., Linearized group field theory and power-counting theorems, Classical Quantum Gravity 27 (2010), 155012, 14 pages, arXiv:1002.3592.
  4. Ben Geloun J., Magnen J., Rivasseau V., Bosonic colored group field theory, Eur. Phys. J. C Part. Fields 70 (2010), 1119-1130, arXiv:0911.1719.
  5. Bollobás B., Modern graph theory, Graduate Texts in Mathematics, Vol. 184, Springer-Verlag, New York, 1998.
  6. Bollobás B., Riordan O., A polynomial invariant of graphs on orientable surfaces, Proc. London Math. Soc. 83 (2001), 513-531.
  7. Bollobás B., Riordan O., A polynomial of graphs on surfaces, Math. Ann. 323 (2002), 81-96.
  8. Ellis-Monaghan J.A., Moffatt I., Graphs on surfaces. Dualities, polynomials, and knots, Springer Briefs in Mathematics, Springer, New York, 2013.
  9. Gurau R., Lost in translation: topological singularities in group field theory, Classical Quantum Gravity 27 (2010), 235023, 20 pages, arXiv:1006.0714.
  10. Gurau R., Topological graph polynomials in colored group field theory, Ann. Henri Poincaré 11 (2010), 565-584, arXiv:0911.1945.
  11. Gurau R., Colored group field theory, Comm. Math. Phys. 304 (2011), 69-93, arXiv:0907.2582.
  12. Gurau R., The complete $1/N$ expansion of colored tensor models in arbitrary dimension, Ann. Henri Poincaré 13 (2012), 399-423, arXiv:1102.5759.
  13. Gurau R., Ryan J.P., Colored tensor models - a review, SIGMA 8 (2012), 020, 78 pages, arXiv:1109.4812.
  14. Krajewski T., Rivasseau V., Tanasă A., Wang Z., Topological graph polynomials and quantum field theory. I. Heat kernel theories, J. Noncommut. Geom. 4 (2010), 29-82, arXiv:0811.0186.
  15. Ryan J.P., Tensor models and embedded Riemann surfaces, Phys. Rev. D 85 (2012), 024010, 9 pages, arXiv:1104.5471.
  16. Tanasă A., Generalization of the Bollobás-Riordan polynomial for tensor graphs, J. Math. Phys. 52 (2011), 073514, 17 pages, arXiv:1012.1798.
  17. Tutte W.T., Graph theory, Encyclopedia of Mathematics and its Applications, Vol. 21, Addison-Wesley Publishing Company, Reading, MA, 1984.
  18. Wolsey L.A., Integer programming, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., New York, 1998.

Previous article  Next article   Contents of Volume 12 (2016)