|
SIGMA 10 (2014), 116, 10 pages arXiv:1409.4287
https://doi.org/10.3842/SIGMA.2014.116
Non-Symmetric Basic Hypergeometric Polynomials and Representation Theory for Confluent Cherednik Algebras
Marta Mazzocco
Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU, UK
Received October 31, 2014, in final form December 19, 2014; Published online December 30, 2014
Abstract
In this paper we introduce a basic representation for the confluent Cherednik algebras $\mathcal H_{\rm V}$, $\mathcal H_{\rm III}$, $\mathcal H_{\rm III}^{D_7}$ and $\mathcal H_{\rm III}^{D_8}$ defined in arXiv:1307.6140. To prove faithfulness of this basic representation, we introduce the non-symmetric versions of the continuous dual $q$-Hahn, Al-Salam-Chihara, continuous big $q$-Hermite and continuous $q$-Hermite polynomials.
Key words:
DAHA; Cherednik algebra; $q$-Askey scheme; Askey-Wilson polynomials.
pdf (368 kb)
tex (12 kb)
References
-
Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54 (1985), iv+55 pages.
-
Cherednik I., Double affine Hecke algebras, Knizhnik-Zamolodchikov equations, and Macdonald's operators, Int. Math. Res. Not. 1992 (1992), no. 9, 171-180.
-
Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010.
-
Koornwinder T.H., The relationship between Zhedanov's algebra ${\rm AW}(3)$ and the double affine Hecke algebra in the rank one case, SIGMA 3 (2007), 063, 15 pages, math.QA/0612730.
-
Mazzocco M., Confluences of the Painlevé equations, Cherednik algebras and $q$-Askey scheme, arXiv:1307.6140.
-
Noumi M., Stokman J.V., Askey-Wilson polynomials: an affine Hecke algebra approach, in Laredo Lectures on Orthogonal Polynomials and Special Functions, Adv. Theory Spec. Funct. Orthogonal Polynomials, Nova Sci. Publ., Hauppauge, NY, 2004, 111-144, math.QA/0001033.
-
Sahi S., Nonsymmetric Koornwinder polynomials and duality, Ann. of Math. 150 (1999), 267-282, q-alg/9710032.
|
|