|
SIGMA 10 (2014), 113, 28 pages arXiv:1312.6577
https://doi.org/10.3842/SIGMA.2014.113
Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One
Maarten van Pruijssen a and Pablo Román b
a) Universität Paderborn, Institut für Mathematik, Warburger Str. 100, 33098 Paderborn, Germany
b) CIEM, FaMAF, Universidad Nacional de Córdoba, Medina Allende s/n Ciudad Universitaria, Córdoba, Argentina
Received April 30, 2014, in final form December 12, 2014; Published online December 20, 2014
Abstract
We present a method to obtain infinitely many examples of pairs $(W,D)$ consisting of a matrix weight $W$ in one variable and a symmetric second-order differential operator $D$. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs $(G,K)$ of rank one and a suitable irreducible $K$-representation. The heart of the construction is the existence of a suitable base change $\Psi_{0}$. We analyze the base change and derive several properties. The most important one is that $\Psi_{0}$ satisfies a first-order differential equation which enables us to compute the radial part of the Casimir operator of the group $G$ as soon as we have an explicit expression for $\Psi_{0}$. The weight $W$ is also determined by $\Psi_{0}$. We provide an algorithm to calculate $\Psi_{0}$ explicitly. For the pair $(\mathrm{USp}(2n),\mathrm{USp}(2n-2)\times\mathrm{USp}(2))$ we have implemented the algorithm in GAP so that individual pairs $(W,D)$ can be calculated explicitly. Finally we classify the Gelfand pairs $(G,K)$ and the $K$-representations that yield pairs $(W,D)$ of size $2\times2$ and we provide explicit expressions for most of these cases.
Key words:
matrix valued classical pairs; multiplicity free branching.
pdf (593 kb)
tex (41 kb)
References
-
Baldoni Silva M.W., Branching theorems for semisimple Lie groups of real rank one, Rend. Sem. Mat. Univ. Padova 61 (1979), 229-250.
-
Berezans'kiǐ J.M., Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, Vol. 17, Amer. Math. Soc., Providence, R.I., 1968.
-
Bochner S., Über Sturm-Liouvillesche Polynomsysteme, Math. Z. 29 (1929), 730-736.
-
Camporesi R., A generalization of the Cartan-Helgason theorem for Riemannian symmetric spaces of rank one, Pacific J. Math. 222 (2005), 1-27.
-
Casselman W., Miličić D., Asymptotic behavior of matrix coefficients of admissible representations, Duke Math. J. 49 (1982), 869-930.
-
Damanik D., Pushnitski A., Simon B., The analytic theory of matrix orthogonal polynomials, Surv. Approx. Theory 4 (2008), 1-85, arXiv:0711.2703.
-
Dixmier J., Algèbres envellopantes, Éditions Jacques Gabay, Paris, 1996.
-
Duistermaat J.J., Grünbaum F.A., Differential equations in the spectral parameter, Comm. Math. Phys. 103 (1986), 177-240.
-
Durán A.J., Matrix inner product having a matrix symmetric second order differential operator, Rocky Mountain J. Math. 27 (1997), 585-600.
-
Durán A.J., Grünbaum F.A., Orthogonal matrix polynomials satisfying second-order differential equations, Int. Math. Res. Not. 2004 (2004), no. 10, 461-484.
-
Fulton W., Harris J., Representation theory, Graduate Texts in Mathematics, Vol. 129, Springer-Verlag, New York, 1991.
-
GAP - Groups, Algorithms, and Programming, Ver. 4.6.4, 2013, available at http://www.gap-system.org.
-
Geronimo J.S., Scattering theory and matrix orthogonal polynomials on the real line, Circuits Systems Signal Process. 1 (1982), 471-495.
-
Groenevelt W., Ismail M.E.H., Koelink E., Spectral decomposition and matrix-valued orthogonal polynomials, Adv. Math. 244 (2013), 91-105, arXiv:1206.4785.
-
Groenevelt W., Koelink E., A hypergeometric function transform and matrix-valued orthogonal polynomials, Constr. Approx. 38 (2013), 277-309, arXiv:1210.3958.
-
Grünbaum F.A., Pacharoni I., Tirao J., Matrix valued spherical functions associated to the complex projective plane, J. Funct. Anal. 188 (2002), 350-441.
-
Grünbaum F.A., Tirao J., The algebra of differential operators associated to a weight matrix, Integral Equations Operator Theory 58 (2007), 449-475.
-
He X., Ochiai H., Nishiyama K., Oshima Y., On orbits in double flag varieties for symmetric pairs, Transform. Groups 18 (2013), 1091-1136, arXiv:1208.2084.
-
Heckman G., van Pruijssen M., Matrix valued orthogonal polynomials for Gelfand pairs of rank one, arXiv:1310.5134.
-
Knapp A.W., Lie groups beyond an introduction, Progress in Mathematics, Vol. 140, 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 2002.
-
Koelink E., van Pruijssen M., Román P., Matrix-valued orthogonal polynomials related to $({\rm SU}(2)\times{\rm SU}(2),{\rm diag})$, Int. Math. Res. Not. 2012 (2012), 5673-5730, arXiv:1012.2719.
-
Koelink E., van Pruijssen M., Román P., Matrix-valued orthogonal polynomials related to $({\rm SU}(2)\times{\rm SU}(2),{\rm diag})$, II, Publ. Res. Inst. Math. Sci. 49 (2013), 271-312, arXiv:1203.0041.
-
Koornwinder T.H., Matrix elements of irreducible representations of ${\rm SU}(2)\times{\rm SU}(2)$ and vector-valued orthogonal polynomials, SIAM J. Math. Anal. 16 (1985), 602-613.
-
Krein M.G., Infinite $J$-matrices and a matrix-moment problem, Doklady Akad. Nauk SSSR 69 (1949), 125-128.
-
Krein M.G., Fundamental aspects of the representation theory of Hermitian operators with deficiency index $(m,m)$, Amer. Math. Soc. Translations Ser. 2 97 (1971), 75-143.
-
Lepowsky J., Multiplicity formulas for certain semisimple Lie groups, Bull. Amer. Math. Soc. 77 (1971), 601-605.
-
Lepowsky J., Algebraic results on representations of semisimple Lie groups, Trans. Amer. Math. Soc. 176 (1973), 1-44.
-
Miranian L., On classical orthogonal polynomials and differential operators, J. Phys. A: Math. Gen. 38 (2005), 6379-6383.
-
Pacharoni I., Román P., A sequence of matrix valued orthogonal polynomials associated to spherical functions, Constr. Approx. 28 (2008), 127-147, math.RT/0702494.
-
Pacharoni I., Tirao J., One-step spherical functions of the pair $({\rm SU}(n+1),{\rm U}(n))$, in Lie Groups: Structure, Actions, and Representations, Progr. Math., Vol. 306, Birkhäuser/Springer, New York, 2013, 309-354, arXiv:1209.4500.
-
Pacharoni I., Tirao J., Zurrián I., Spherical functions associated to the three dimensional sphere, Ann. Mat. Pura Appl. 146 (2014), 1727-1778, arXiv:1203.4275.
-
Pacharoni I., Zurrián I., Matrix ultraspherical polynomials: the $2\times 2$ fundamental cases, arXiv:1309.6902.
-
van Pruijssen M., Matrix valued orthogonal polynomials related to compact Gel'fand pairs of rank one, Ph.D. Thesis, Radboud University Nijmegen, 2012, available at http://repository.ubn.ru.nl/dspace31xmlui/handle/2066/100840.
-
van Pruijssen M., Román P., GAP codes SP.g and SP2.g, available at http://www.mvanpruijssen.nl.
-
Shapovalov N.N., A certain bilinear form on the universal enveloping algebra of a complex semisimple Lie algebra, Funct. Anal. Appl. 6 (1972), 307-312.
-
Tirao J.A., The matrix-valued hypergeometric equation, Proc. Natl. Acad. Sci. USA 100 (2003), 8138-8141.
-
Tirao J.A., Zurrián I.N., Spherical functions of fundamental $K$-types associated with the $n$-dimensional sphere, SIGMA 10 (2014), 071, 41 pages, arXiv:1312.0909.
-
Vretare L., Elementary spherical functions on symmetric spaces, Math. Scand. 39 (1976), 343-358.
-
Wang H.C., Two-point homogeneous spaces, Ann. of Math. 55 (1952), 177-191.
-
Warner G., Harmonic analysis on semi-simple Lie groups. II, Die Grundlehren der mathematischen Wissenschaften, Vol. 189, Springer-Verlag, New York - Heidelberg, 1972.
|
|