|
SIGMA 10 (2014), 109, 13 pages arXiv:1408.0253
https://doi.org/10.3842/SIGMA.2014.109
Contribution to the Special Issue on Poisson Geometry in Mathematics and Physics
Prequantization of the Moduli Space of Flat ${\rm PU}(p)$-Bundles with Prescribed Boundary Holonomies
Derek Krepski
Department of Mathematics, University of Manitoba, Canada
Received August 05, 2014, in final form November 28, 2014; Published online December 05, 2014
Abstract
Using the framework of quasi-Hamiltonian actions, we compute the obstruction to prequantization for the moduli space of flat ${\rm PU}(p)$-bundles over a compact orientable surface with prescribed holonomies around boundary components, where $p>2$ is prime.
Key words:
quantization; moduli space of flat connections; parabolic bundles.
pdf (462 kb)
tex (38 kb)
References
-
Adem A., Leida J., Ruan Y., Orbifolds and stringy topology, Cambridge Tracts in Mathematics, Vol. 171, Cambridge University Press, Cambridge, 2007.
-
Alekseev A., Malkin A., Meinrenken E., Lie group valued moment maps, J. Differential Geom. 48 (1998), 445-495, dg-ga/9707021.
-
Alekseev A., Meinrenken E., Dirac structures and Dixmier-Douady bundles, Int. Math. Res. Not. 2012 (2012), 904-956, arXiv:0907.1257.
-
Alekseev A., Meinrenken E., Woodward C., The Verlinde formulas as fixed point formulas, J. Symplectic Geom. 1 (2001), 1-46.
-
Atiyah M.F., Bott R., The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), 523-615.
-
Bismut J.-M., Labourie F., Symplectic geometry and the Verlinde formulas, in Surveys in Differential Geometry: Differential Geometry Inspired by String Theory, Surv. Differ. Geom., Vol. 5, Int. Press, Boston, MA, 1999, 97-311.
-
Borel A., Friedman R., Morgan J.W., Almost commuting elements in compact Lie groups, Mem. Amer. Math. Soc. 157 (2002), x+136 pages, math.GR/9907007.
-
Bott R., Tu L.W., Differential forms in algebraic topology, Graduate Texts in Mathematics, Vol. 82, Springer-Verlag, New York - Berlin, 1982.
-
Bourbaki N., Groupes et algèbres de Lie, Chapitres 4, 5 et 6, Masson, Paris, 1981.
-
Daskalopoulos G.D., Wentworth R.A., Geometric quantization for the moduli space of vector bundles with parabolic structure, in Geometry, Topology and Physics (Campinas, 1996), de Gruyter, Berlin, 1997, 119-155.
-
Gawrilow E., Joswig M., polymake: a framework for analyzing convex polytopes, in Polytopes - Combinatorics and Computation (Oberwolfach, 1997), DMV Sem., Vol. 29, Birkhäuser, Basel, 2000, 43-73.
-
Goldman W.M., The symplectic nature of fundamental groups of surfaces, Adv. Math. 54 (1984), 200-225.
-
Ho N.-K., Liu C.-C.M., Connected components of spaces of surface group representations. II, Int. Math. Res. Not. 2005 (2005), 959-979, math.SG/0406069.
-
Konno H., On the natural line bundle on the moduli space of stable parabolic bundles, Comm. Math. Phys. 155 (1993), 311-324.
-
Krepski D., Pre-quantization of the moduli space of flat $G$-bundles over a surface, J. Geom. Phys. 58 (2008), 1624-1637, arXiv:0708.1269.
-
Krepski D., Pre-quantization of the moduli space of flat $G$-bundles, Ph.D. Thesis, University of Toronto, 2009, arXiv:1004.2286.
-
Krepski D., Meinrenken E., On the Verlinde formulas for ${\rm SO}(3)$-bundles, Q. J. Math. 64 (2013), 235-252, arXiv:1106.4854.
-
Meinrenken E., The basic gerbe over a compact simple Lie group, Enseign. Math. 49 (2003), 307-333, math.DG/0209194.
-
Meinrenken E., Twisted $K$-homology and group-valued moment maps, Int. Math. Res. Not. 2012 (2012), 4563-4618, arXiv:1008.1261.
-
Meinrenken E., Sjamaar R., Singular reduction and quantization, Topology 38 (1999), 699-762, dg-ga/9707023.
-
Pauly C., Espaces de modules de fibrés paraboliques et blocs conformes, Duke Math. J. 84 (1996), 217-235.
-
Stembridge J., A Maple package for root systems and finite Coxeter groups, 2004, available at http://www.math.lsa.umich.edu/~jrs/maple.html#coxeter.
-
Toledano Laredo V., Positive energy representations of the loop groups of non-simply connected Lie groups, Comm. Math. Phys. 207 (1999), 307-339, math.QA/0106196.
|
|