|
SIGMA 10 (2014), 105, 22 pages arXiv:1411.4223
https://doi.org/10.3842/SIGMA.2014.105
Everywhere Equivalent 3-Braids
Alexander Stoimenow
Gwangju Institute of Science and Technology, School of General Studies, GIST College, 123 Cheomdan-gwagiro, Gwangju 500-712, Korea
Received July 08, 2014, in final form November 04, 2014; Published online November 16, 2014
Abstract
A knot (or link) diagram is said to be everywhere equivalent if all the diagrams obtained by switching one crossing represent the same knot (or link). We classify such diagrams of a closed 3-braid.
Key words:
3-braid group; Jones polynomial; Kauffman bracket; Burau representation; adequate diagram.
pdf (434 kb)
tex (76 kb)
References
-
Bae Y., Morton H.R., The spread and extreme terms of Jones polynomials, J. Knot Theory Ramifications 12 (2003), 359-373, math.GT/0012089.
-
Birman J.S., Menasco W.W., Studying links via closed braids. III. Classifying links which are closed 3-braids, Pacific J. Math. 161 (1993), 25-113.
-
Cromwell P.R., Knots and links, Cambridge University Press, Cambridge, 2004.
-
Fiedler T., On the degree of the Jones polynomial, Topology 30 (1991), 1-8.
-
Franks J., Williams R.F., Braids and the Jones polynomial, Trans. Amer. Math. Soc. 303 (1987), 97-108.
-
Garside F.A., The braid group and other groups, Quart. J. Math. Oxford 20 (1969), 235-254.
-
Jones V.F.R., Hecke algebra representations of braid groups and link polynomials, Ann. of Math. 126 (1987), 335-388.
-
Kauffman L.H., State models and the Jones polynomial, Topology 26 (1987), 395-407.
-
Lickorish W.B.R., Millett K.C., The reversing result for the Jones polynomial, Pacific J. Math. 124 (1986), 173-176.
-
Lickorish W.B.R., Millett K.C., A polynomial invariant of oriented links, Topology 26 (1987), 107-141.
-
Lickorish W.B.R., Thistlethwaite M.B., Some links with nontrivial polynomials and their crossing-numbers, Comment. Math. Helv. 63 (1988), 527-539.
-
Morton H.R., Seifert circles and knot polynomials, Math. Proc. Cambridge Philos. Soc. 99 (1986), 107-109.
-
Murasugi K., On closed 3-braids, Memoirs of the American Mathmatical Society, Vol. 151, Amer. Math. Soc., Providence, R.I., 1974.
-
Rolfsen D., Knots and links, Publish or Perish, Berkeley, Calif., 1976.
-
Stoimenow A., The skein polynomial of closed 3-braids, J. Reine Angew. Math. 564 (2003), 167-180, math.GT/0103041.
-
Stoimenow A., On unknotting numbers and knot trivadjacency, Math. Scand. 94 (2004), 227-248.
-
Stoimenow A., Properties of closed 3-braids, math.GT/0606435.
-
Stoimenow A., Coefficients and non-triviality of the Jones polynomial, J. Reine Angew. Math. 657 (2011), 1-55.
-
Stoimenow A., Everywhere equivalent and everywhere different knot diagrams, Asian J. Math. 17 (2013), 95-137.
-
Stoimenow A., On the crossing number of semiadequate links, Forum Math. 26 (2014), 1187-1246.
-
Stoimenow A., Everywhere equivalent 2-component links, Preprint.
-
Thistlethwaite M.B., On the Kauffman polynomial of an adequate link, Invent. Math. 93 (1988), 285-296.
-
Wolfram S., Mathematica - a system for doing mathematics by computer, Addison-Wesley, Reading, MA, 1988.
|
|