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Abstract. The equations of motion of a charged particle in the field of Yang’s SU(2)
monopole in 5-dimensional Euclidean space are derived by applying the Kaluza–Klein for-
malism to the principal bundle R8 \{0} → R5 \{0} obtained by radially extending the Hopf
fibration S7 → S4, and solved by elementary methods. The main result is that for every
particle trajectory r : I → R5 \ {0}, there is a 4-dimensional cone with vertex at the origin
on which r is a geodesic. We give an explicit expression of the cone for any initial conditions.
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1 Introduction

The problem of the classical motion of an electrically charged particle in the field of Dirac’s
magnetic monopole is a system of three second-order non-linear differential equations, written
concisely as

:r = λ
r× 9r

|r|3
, (1.1)

for r ∈ 9R3 := R3 \ {0} and a constant λ ∈ R. We find it remarkable that, although Dirac’s
original paper [3] about his monopole only appeared in 1931, Henri Poincaré investigated the
exact same system of equations in a 1896 paper [25]. His analysis was a successful attempt to
explain an experiment of the physicist Kristian Birkeland, which consisted of approaching one
pole of a strong magnet near cathode rays, the other pole being far enough to be considered
negligible. We thus call this one-body dynamical system the “Poincaré problem in 9R3”.

In this paper, we are interested in the generalization of this problem to SU(2) gauge theory.
Recall that Dirac’s monopole in R3 is obtained by radially extending the Hopf fibration S3 → S2

to a principal U(1)-bundle over 9R3 [19, 27, 31]. The same procedure using the next Hopf fibration
S7 → S4 gives rise to non-Abelian analogue of the monopole in Euclidean space R5, known in
the literature as Yang’s monopole [20, 34]. It is a non-trivial SO(5)-symmetrical solution to the
Yang–Mills equations in SU(2) gauge theory. Our main concern, which we call the “Poincaré
problem in 9R5”, is for the classical motion of a charged particle in the presence of this monopole.
The equations of motion are derived in Section 3 using a Kaluza–Klein formalism. In this context,
the charge – which generalizes λ in (1.1) – is a vector e rotating in R3.

The first system, (1.1), has been thoroughly studied in the literature [5, 6, 7, 8, 10, 12, 14,
23, 25, 26, 28]. The main result – as shown first by Poincaré – is that for every solution r,
there is a cone with vertex at the origin on which r is a geodesic (it follows from (1.1) that | 9r|
is constant). Moreover, Poincaré provided an explicit expression for the cone’s direction and
the angle at its vertex (which vary depending on the initial conditions and the charge λ). Since
geodesics on cones are well understood, we get a complete description of the space of solutions.
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The main result of this paper is that this correspondence with geodesics on cones also holds for
Yang’s monopole, with suitable modifications. Given any solution r : I → 9R5 of the equations
of motion, there is a 4-dimensional cone with vertex at the origin of R5 on which r is a geodesic.

Our proof proceeds in two main steps. The first is the derivation of an explicit expression
(given in Theorem 7.1) for the direction L ∈ 9R5 of the 4-dimensional cone on which the particle is
a geodesic. The second is a general result (Theorem 6.1) about geodesics on higher dimensional
cones that we prove here. This theorem states that for all n ≥ 2, a geodesic on an n-dimensional
cone C is also a geodesic on a 2-dimensional cone embedded in C with the same angle at the
vertex, and conversely.

Moreover, this last result shows that particles in Yang’s monopole follow geodesics on 2-
dimensional cones, and hence all solutions can be obtained explicitly, as was the case for Dirac’s
monopole.

There is a closely related problem called the “MICZ-Kepler system” [15, 35], which comes
from generalizing the Kepler problem (for the motion of a particle under a central inverse-
squared attractive force in 9R3) by adding a Lorentz force due to Dirac’s monopole at the origin.
It has also been generalized in 9R5 using Yang’s monopole [11], and in all Euclidean spaces 9Rn by
a construction due to Meng [16, 17, 18]. It was shown [1] that for all odd dimensions, the solutions
to these systems are all conics. Moreover, Montgomery showed [22] that in any dimension, this
system is equivalent to the classical Kepler problem on a cone (with no magnetic charge). It
is thus natural to expect that the magnetic monopole alone would yield straight lines on cones
(geodesics). Our paper shows that this is the case, at least for Dirac’s and Yang’s monopole.

The paper is organized as follows. In Section 2, we recall the classical treatment of the
Poincaré problem in 9R3.

In Section 3 we briefly review the Kaluza–Klein formalism for the motion of a charged particle
in a Yang–Mills field [2, 9, 13, 24]. For a principal G-bundle P→M with connection, the Kaluza–
Klein approach is to construct a particular G-invariant metric on P from a metric on M and an
Ad-invariant metric on g. Then, projection on M of the geodesics on P defines motion of charged
particles in M . The analogue of the charge is a vector rotating in g. The goal of this section is to
provide coordinate expressions for the equations of motion. We note (see Montgomery [21]) that
this formulation is equivalent to the ones used by Sternberg [30], Weinstein [32], and Wong [33].

In Section 4 we describe the extended Hopf bundles endowed with connections that give the
Poincaré problem in 9R3 and 9R5. They are obtained by radially extending the Hopf fibrations
S2n−1 → Sn for n = 2, 4 to fibrations 9R2n → 9Rn+1, and taking the connections corresponding
to a horizontal subspace that is orthogonal to the vertical subspace in Euclidean space 9R2n. As
a first example we apply the Kaluza–Klein formalism to 9R4 → 9R3 and show that we recover the
equations of motion (1.1).

In Section 5 we derive the equations of motion of the Poincaré problem in 9R5. That is, the
one-body dynamical system for the motion of a charged particle in the field of Yang’s monopole.

Section 6 is devoted to the study of geodesics on higher dimensional cones. This section is
independent from the rest of the paper, but its conclusions will be crucial to the solution of the
Poincaré problem in 9R5.

Finally, in Section 7 we show that a charged particle in Yang’s monopole must follow
a geodesic on a 4-dimensional cone centred at the origin of R5. We give an explicit expres-
sion for the cone, and thus obtain a complete description of the space of solutions.

As a side remark, we note that there is a converse to the result of this paper. We prove here
one implication, namely, that if r a solution to the Poincaré problem (in 9R3 or 9R5) then r is
a geodesic on a cone with vertex at the origin. But we also have that for any cone centred at
the origin (of R3 or R5) and any geodesic r on it, there is a unique charge (λ or e) for which r
is a solution to the Poincaré problem (in 9R3 or 9R5). For brevity we will not discuss this, but it
can be proved with the theory presented in this paper.
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2 Particle motion in Dirac’s monopole

Let us recall Poincaré’s work [25] on the motion of a charged particle in the field of a single
magnetic pole. Taking the pole to be centred at the origin, we find an electromagnetic field of
the form

E = 0, B = g
r

r3
,

for some constant g ∈ R, r ∈ 9R3 := R3 \ {0} and r = |r|. Assuming the particle is subject to the
Lorentz force F = q(E + 9r×B), we get the equation of motion

:r = λ
r× 9r

r3
, (2.1)

for some constant λ ∈ R depending on the strength g of the magnet and the mass m and charge q
of the particle. This is the system of ordinary differential equations that Poincaré analysed, and
is also the one describing motion of a charged particle in the field of Dirac’s monopole. Now, as
Poincaré noticed, differentiation shows that the vector

L := r× 9r + λ
r

r

is constant. Taking the norm, we see that L = 0 if and only if λ = 0 and 9r is everywhere parallel
to r. This corresponds to motion at constant speed on a straight line that passes through the
origin. Since those curves will come out often here and in subsequent sections, we give them the
following name (a term borrowed from [1]).

Definition 2.1. A colliding curve is a curve r : I → 9Rn such that 9r is everywhere parallel to r.

Now, suppose r is non-colliding. Then, the cosine of the angle between r and L is

cosψ =
r · L
|r||L|

=
λ

|L|
, (2.2)

which is constant. Hence, the particle moves on a cone directed along L. Furthermore, (2.1)
shows that the acceleration is always normal to the surface of the cone, and so the particle
follows a geodesic of that cone.

With this information in hand, the problem reduces to the geodesic equations on a cone
in R3 – a standard problem. Note that the system (2.1) is invariant under rotation, so we may
assume the cone is directed along the positive z-axis. Taking t = 0 to be the point of closest
approach to the origin, we find

r(t) =
√
r20 + v20t

2

(
sinψ cos

(
arctan(v0t/r0)

sinψ

)
, sinψ sin

(
arctan(v0t/r0)

sinψ

)
, cosψ

)
,

where r0, v0 are the initial radius and velocity and ψ is half the angle at the vertex of the cone.
Moreover, equation (2.2) gives an explicit expression for the angle, namely, ψ = arctan(r0v0/λ).
Fig. 1 shows a geodesic on a cone.

In this section, the equations of motion were derived classically by considering the “Coulomb-
like” magnetic field B = gr/|r|3 and the Lorentz force. But Dirac’s monopole is also naturally
described in terms of a connection on the radial extension of the Hopf bundle S1 → S3 → S2.
In Section 4 we will show that this approach together with the Kaluza–Klein formalism give rise
to the exact same equations of motion. Motion in Yang’s monopole in 9R5 will be obtained this
way but by using the next Hopf fibration S3 → S7 → S4.



4 M. Mayrand

Figure 1. A geodesic on a cone.

3 The Kaluza–Klein formalism

Since Dirac’s and Yang’s monopole are more generally Yang–Mills fields, we need a way of
obtaining the equations of motion of a particle in a general Yang–Mills field. There are several
equivalent ways [21] of doing this, including the formulations of Sternberg [30], Weinstein [32],
Wong [33], and Kerner [13]. In this paper we use the latter approach, which is known in the
literature as the “Kaluza–Klein formalism”. The goal of this section is to briefly review this
formalism and to give coordinate expressions for the equations of motion. We closely follow the
presentation of [9]. See also [2, 13, 24].

Let π : P →M be a principal bundle with structure groupG acting on P to the right. We then
have local sections σi : Ui → π−1(Ui) such that the local trivialisations φi(p) = (π(p), a) ∈ Ui×G
correspond to the right action p = σ(π(p)) · a. Let θ be a connection one-form on P . For an
Ad-invariant metric 〈 , 〉 on the Lie algebra g of G and a metric g on M , define the following
G-invariant metric on P ,

γ(X,Y )|p = g(π∗(X), π∗(Y ))|π(p) + 〈θ(X)|p, θ(Y )|p〉.

Then, P with this metric γ is a Riemmanian manifold whose geodesics projected to M define
the motion of charged particles in M , where the charge is a vector of constant magnitude in g.

We now set up the equations of motion in terms of a local coordinate system {xi} on an open
neighbourhood U ⊆ M and a basis {Tk} for g. Let TpP = Vp ⊕ Hp be the decomposition of
the tangent space into a vertical and horizontal subspace. The action of G induces a canonical
isomorphism between Vp and g, which gives fundamental vector fields {Lk} on P corresponding
to {Tk}. Then, for a curve t 7→ p(t) in P , the tangent vector at t is 9p(t) = v(t) + h(t), for some
v(t) ∈ Vp(t) and h(t) ∈ Hp(t), and we may expand v = vkLk. The geodesic equations for the
curve p with respect to the metric γ then become

:xµ + Γµλρ 9xλ 9xρ = 〈v, F̃λν 9xν〉gλµ, (3.1)

9vk = 0, (3.2)

where Γµλρ are the Christoffel symbols of the metric g on M , and

F̃ = dθ +
1

2
[θ, θ] =

1

2
F̃µνdxµ ∧ dxν
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is the curvature two-form. Let σ : U → π−1(U) be the canonical local section and define the
g-valued one-form

A = Aµdxµ = AkµTkdx
µ = σ∗(θ),

called the local gauge potential over U . Let a ∈ G be the local trivialization p ∼ (π(p), a) ∈
U ×G, and let

e = ekTk = ava−1.

Finally, set bij := 〈Ti, Tj〉, let Ckij be the structure constants of g, and let

Fµν = F kµνTk = ∂µAν − ∂νAµ + [Aµ, Aν ]

be the curvature two-form in the σ-gauge. So Fµν and F̃µν are related by F̃µν = a−1Fµνa. Then,
the geodesic equations (3.1) and (3.2) are

:xµ + Γµλρ 9xλ 9xρ = bije
iF jλν 9xνgλµ, (3.3)

9ek + CkijA
i
µe
j 9xµ = 0. (3.4)

This system of ordinary differential equations defines the motion of a charged particle in M .
The term on the right-hand side of (3.3) is the generalization of the Lorentz force. The vector
e = ekTk ∈ g is the analogue of the charge divided by the mass of the particle. Note that e has
magnitude 〈e, e〉1/2 = 〈v, v〉1/2, which is constant by (3.2). However, unless G is Abelian, e itself
is not in general constant.

4 The extended Hopf bundles

The purpose of this section is to define the principal bundles endowed with connections that
describe Dirac’s and Yang’s monopole. The bundles are obtained by radially extending the Hopf
bundles Sn−1 → S2n−1 → Sn, for n = 2, 4. We will first give a more abstract definition by
means of the canonical projection of certain quotient spaces of the vector spaces 9C2 and 9H2. It
will then lead to the desired bundles 9R2n → 9Rn+1 by diffeomorphisms. Similar constructions
can be found in [31] and [4].

Let K be C or H, and let 9K2 := K2 \ {(0, 0)}. Let ∼ be the equivalence relation on 9K2

defined by (z1, z2) ∼ (w1, w2) if there is a unit norm λ ∈ K such that (z1, z2) = (w1λ,w2λ). The
quotient of 9K2 by this relation gives an (n+ 1)-dimensional differentiable manifold M , and we
define the extended Hopf map by the canonical projection

π : 9K2 →M. (4.1)

We get the structure of a principal bundle as follows. Let S1
K be the set of unit norm elements

in K. We have S1
C = U(1) and S1

H = SU(2), so S1
K is a Lie group. It acts freely on 9K2 by

(z1, z2) · λ = (z1λ, z2λ), and M is the quotient space of this action. Moreover, M is covered by
the two open neighbourhoods

Ui := {[(z1, z2)] ∈M : zi 6= 0}, i = 1, 2,

over which we have the local trivializations

π−1(Ui)→M × S1
K , (z1, z2) 7→ ([(z1, z1)], zi/|zi|), i = 1, 2. (4.2)
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Thus, the extended Hopf map (4.1) is a principal S1
K-bundle. Now, the principal bundle S1

K →
9R2n → 9Rn+1 is obtained from (4.1) by the identification of K with Rn using the basis {1, i}
for C and {1, i, j, k} for H, and by the diffeomorphism

f : M → 9Rn+1, [(z1, z2)] 7→

(
2z1z

∗
2√

|z1|2 + |z2|2
,
|z1|2 − |z2|2√
|z1|2 + |z2|2

)
,

where ∗ denotes conjugation in K. This construction gives the two principal bundles

U(1)→ 9R4 → 9R3 and SU(2)→ 9R8 → 9R5.

Motion will take place in Euclidean spaces 9R3 and 9R5.
Let us introduce the following set of coordinates on M ∼= 9Rn+1.

φ1 : U1 ⊆M → Rn × R+, [(z1, z2)] 7→
(
z2z
−1
1 ,
√
|z1|2 + |z2|2

)
, (4.3)

φ2 : U2 ⊆M → Rn × R+, [(z1, z2)] 7→
(
z1z
−1
2 ,
√
|z1|2 + |z2|2

)
. (4.4)

These coordinates are denoted (u, r) = (u1, . . . , un, r) and are related to the Cartesian coordi-
nates (x1, . . . , xn+1) of 9Rn+1 by

(x1, . . . , xn+1) =
(
f ◦ φ−11

)
(u, r) =

(
2ru∗

1 + |u|2
, r

1− |u|2

1 + |u|2

)
,

(x1, . . . , xn+1) =
(
f ◦ φ−12

)
(u, r) =

(
2ru

|u|2 + 1
, r
|u|2 − 1

|u|2 + 1

)
. (4.5)

An observation that will be crucial later is that (u, r) are precisely the stereographic projection
coordinates from the south and north poles respectively. That is, for r ∈ 9Rn+1, first project on
the unit sphere by r 7→ r/|r|. Then, the stereographic projection of r/|r| gives u = (u1, . . . , un),
and the remaining coordinate r is the magnitude of r.

To apply the Kaluza–Klein formalism, we further need a connection on the bundle, a metric
on M ∼= 9Rn+1 and an Ad-invariant metric on g. The connection that gives the Poincaré problem
is obtained by choosing a horizontal subspace that is orthogonal to the vertical subspace in
Euclidean space 9R2n. The metric on M is the one corresponding to the Euclidean metric
on 9Rn+1. Since we observed that the coordinates (u1, . . . , un, r) on M are the stereographic
projection coordinates of 9Rn+1, we know as a standard result that the metric on M is

g =

4r2
n∑
i=1

dui ⊗ dui

(1 + u21 + · · ·+ u2n)2
+ dr ⊗ dr.

For the Ad-invariant metric on g we take 〈Ti, Tj〉 := δij , where {Ti} is a basis for g. When
G = U(1), this basis is the imaginary number T1 = i, and when G = SU(2), it is {T1 = i,
T2 = j, T3 = k}. It is straightforward to verify that 〈Ti, Tj〉 := δij is Ad-invariant.

As an example, we apply the Kaluza–Klein formalism to the principal bundle U(1)→ 9R4 →
9R3 and show that we recover the equations of motion obtained in Section 2, i.e. those describing
the classical motion of a charged particle in the field of Dirac’s monopole.

The vertical subspace Vp ⊆ Tp 9C2 for p = (z1, z2) ∈ 9C2 is spanned by d
dt

∣∣
t=0

(z1, z2) · exp(ti) =

(z1i, z2i). In the Cartesian coordinates (x1, x2, x3, x4) = (z1, z2) of 9R4, we have

Vp = span

{
−x2

∂

∂x1
+ x1

∂

∂x2
− x4

∂

∂x3
+ x3

∂

∂x4

}
.
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We take the horizontal subspace Hp to be the orthogonal complement of Vp. The corresponding
connection one-form is then

θ = i
−x2dx1 + x1dx2 − x4dx3 + x3dx4

x21 + · · ·+ x34
.

This gives the local gauge potential over U1

A = σ∗1(θ) = i
ydx− xdy
2r(z + r)

,

where (x, y, z) are the Cartesian coordinates in 9R3 and r =
√
x2 + y2 + z2. The curvature then

reads

F = i
−zdx ∧ dy + ydx ∧ dz − xdy ∧ dz

2r3
.

Inserting in the equations of motion (3.3) and (3.4), we get

:x =
e

2
· y 9z − z 9y

r3
, :y =

e

2
· z 9x− x 9z

r3
, :z =

e

2
· x 9y − y 9x

r3
, 9e = 0,

which are precisely Poincaré’s original equations (2.1) with λ = e/2.

5 The equations of motion of a particle in Yang’s monopole

In this section, we obtain the equations of motion of a charged particle in the presence of
Yang’s monopole in 9R5 by applying the Kaluza–Klein formalism to the extended Hopf bundle
SU(2)→ 9R8 → 9R5 constructed in Section 4.

To compute the vertical subspace, we use the right action of SU(2) to pullback the basis
{i, j, k} of su(2) to a basis for Vp. The basis vectors are Li|p := d

dt

∣∣
t=0

p · exp(tTi), and in the

Cartesian coordinates (x1, . . . , x8) = (z1, z2) of 9R8 ∼= 9H2, we have

L1 = (−x2, x1, x4,−x3,−x6, x5, x8,−x7),
L2 = (−x3,−x4, x1, x2,−x7,−x8, x5, x6),
L3 = (−x4, x3,−x2, x1,−x8, x7,−x6, x5).

The connection one-form corresponding to a horizontal subspace that is orthogonal to Vp is then

θ =
1

x21 + · · ·+ x28

−x2 x1 x4 −x3 −x6 x5 x8 −x7
−x3 −x4 x1 x2 −x7 −x8 x5 x6
−x4 x3 −x2 x1 −x8 x7 −x6 x5


dx1

...
dx8

 ,

as expressed in the basis {i, j, k} for su(2). We will now use the coordinate system (u, r) =
(u1, . . . , u4, r) on U2 ⊆ M ∼= 9R5 defined by (4.4). Recall that these are the stereographic
projection coordinates from the north pole. Hence, we are working in 9R5 minus the positive x5-
axis. Let σi for i = 1, 2 be the canonical local sections induced by the local trivializations (4.2).
On U2 we obtain the gauge potential

A = σ∗2(θ) =
u∗du− du∗u

2(|u|2 + 1)
,

and the corresponding curvature

F =
du∗ ∧ du

2(|u|2 + 1)2
.



8 M. Mayrand

In matrix notation, we have A = Adu, where

A :=
1

|u|2 + 1

−u2 u1 u4 −u3
−u3 −u4 u1 u2
−u4 u3 −u2 u1

 =:

A1

A2

A3

 .

Inserting in the equations of motions (3.3) and (3.4) of the Kaluza–Klein formalism, we get the
system of differential equations

:u +
2| 9u|2u− 4(u · 9u) 9u

|u|2 + 1
+

2 9r 9u

r
=

E 9u

2r2
, (5.1)

:r − 4r| 9u|2

(|u|2 + 1)2
= 0, (5.2)

9e + 2Be = 0, (5.3)

where e = (e1, e2, e3) and

E :=


0 e1 e2 e3

−e1 0 −e3 e2

−e2 e3 0 −e1
−e3 −e2 e1 0,

 , B :=

 0 −B3 B2

B3 0 −B1

−B2 B1 0

 , Bi := Ai · 9u.

These equations describe the motion of a charged particle in the field of Yang’s monopole at
the origin of Euclidean space R5. The vector e is interpreted as the charge of the particle, and
( 1
2r2

E 9u, 0) ∈ R4 × R+ is the analogue of the Lorentz force. Note that (5.3) immediately gives
e · 9e = 0, and so e has constant magnitude, as anticipated in the general formulation of Section 3.

6 Some facts about cones and their geodesics

The solutions to the equations of motion (5.1), (5.2) and (5.3) will be investigated in Section 7.
Some crucial results that we will need can be stated as general facts about higher dimensional
cones and their geodesics. Hence, we put them in this separate section, which is completely
independent from the rest of the paper. The main goal is Theorem 6.1 and its two corollaries.

First of all, we need a clear definition of what we mean by a k-dimensional cone in Rn, for
k < n. In this paper all cones will have their vertex at the origin. Before the general definition,
here is the most basic classical one.

Definition 6.1. The cone of aperture ψ ∈ (0, π/2] directed along L ∈ 9Rn is the set of all points
r ∈ 9Rn satisfying

r · L
|r||L|

= cosψ. (6.1)

We write a “cone in Rn” or equivalently an “(n− 1)-dimensional cone in Rn” for any such cone.

To generalize this definition to k-dimensional cones in Rn for any k < n, we need the following
observation. In the definition of a cone, equation (6.1) can be rewritten (r/|r|) · L = b, where
b = |L| cosψ is a constant. Thus, the cone is the set of all points in Rn such that when projected
on the unit sphere Sn−1 they lie in the fixed affine hyperplane {x ∈ Rn : x ·L = b} – see Fig. 2.
This motivates the following definition.

Definition 6.2. Let P be an affine k-dimensional plane in Rn that intersects with Sn−1 in
more than one point. The cone generated by P in Rn is the set of all points r ∈ 9Rn such that
r/|r| ∈ P . We write a “k-dimensional cone in Rn” for any such set.
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Figure 2. A cone is defined by radially extending the intersection of an affine plane with the unit

sphere.

To better understand this definition, we first remark the following basic fact.

Proposition 6.1. Let P be a k-dimensional affine plane in Rn intersecting the unit sphere Sn−1

in more than one point. Then, P ∩ Sn−1 is a (k − 1)-sphere.

This proposition shows that a k-dimensional cone in Rn is parametrized by a point in a (k−1)-
sphere and a positive number r > 0. For example, a 2-dimensional cone in R3 intersects the unit
sphere on a circle, and so each point of the cone is uniquely defined by a point on this circle
and a radius r > 0. Here is the proof of the proposition.

Proof. Let P = a+U , where a ∈ Rn and U is a k-dimensional subspace of Rn. Without loss of
generality, we may assume that a is orthogonal to U . Choose an orthonormal basis {v1, . . . ,vk}
for U . Then,

P ∩ Sn−1 =
{
a + x1v1 + · · ·+ xkvk : xi ∈ R, |a + x1v1 + · · ·+ xkvk|2 = 1

}
=
{
a + x1v1 + · · ·+ xkvk : xi ∈ R, x21 + · · ·+ x2k = 1− |a|2

}
,

which is a (k − 1)-sphere of radius
√

1− |a|2 centred at a in Rn. �

The following proposition shows that a k-dimensional cone in Rn, as of Definition 6.2, is in
a sense exactly the same as the classical Definition 6.1 of a cone in Rk+1.

Proposition 6.2. Let C be a k-dimensional cone in Rn for n > k. There is a cone D in Rk+1

directed along (0, . . . , 0, 1) ∈ Rk+1, and a matrix R ∈ SO(n) such that

R(C) =
{

(x1, . . . , xk+1, 0, . . . , 0) ∈ Rn : (x1, . . . , xk+1) ∈ D
}
.

Proof. Let P be the k-dimensional affine plane in Rn that generates C. It is straightforward
to see that there exists R ∈ SO(n) such that

R(P ) = {(x1, . . . , xk, a, 0, . . . , 0) : xi ∈ R},

for some a ≥ 0. Note that since P intersects Sn−1 in more than one point, we have 0 ≤ a < 1,
and hence there is an angle ψ ∈ (0, π/2] such that a = cosψ. Letting L = (0, . . . , 0, 1) ∈ Rk+1,
we get

R(C) =
{
R(r) ∈ Rn : r/|r| ∈ P

}
=
{
r ∈ Rn : r/|r| ∈ R(P )

}
=
{
r ∈ Rn : r/|r| = (x1, . . . , xk, cosψ, 0, . . . , 0) for some xi ∈ R

}
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=

{
(r̃, 0, . . . , 0) ∈ Rk+1 × Rn−k−1 :

r̃ · L
|r̃||L|

= cosψ

}
=
{

(x1, . . . , xk+1, 0, . . . , 0) ∈ Rn : (x1, . . . , xk+1) ∈ D
}
,

where D is the cone of aperture ψ directed along L in 9Rk+1. �

This proposition and its proof allow us to make the following definition.

Definition 6.3. Let C be a k-dimensional cone in Rn, and let P be the affine k-dimensional
plane generating C. Write P = a +U for a ∈ U⊥. The aperture of C is the number ψ ∈ (0, π/2]
for which cosψ = |a|.

It is straightforward to verify that this is well-defined (a is unique and 0 ≤ |a| < 1) and that
it matches the classical Definition 6.1. For a 2-dimensional cone C in R3, our definition of the
aperture is half the angle at the vertex of C.

Consider a 1-dimensional cone of aperture ψ in R3 (two non-parallel rays coming from the
origin). It is intuitively clear that there is a unique 2-dimensional cone of aperture ψ containing
it. Indeed, just rotate the two rays about the bisector, and it will give the desired cone. This
principle of “unique embedding” is indeed true, and generalizes as follows.

Proposition 6.3. Let D be a k-dimensional cone of aperture ψ in Rn, for any k < n. There is
a unique (n− 1)-dimensional cone of aperture ψ containing D.

Proof. Let Q = a +U be the k-dimensional affine plane generating D, and assume a ∈ U⊥ so
that cosψ = |a|. Then, U ⊆ (span{a})⊥, so the hyperplane P = a+(span{a})⊥ generates an (n−
1)-dimensional cone of aperture ψ containing D. This shows existence. For uniqueness, suppose
that P̃ = b + V , b ∈ V ⊥, generates an (n − 1)-dimensional cone of aperture ψ containing D.
Write b = a + c for c ∈ (span{a})⊥. Then, |a|2 = cos2 ψ = |b|2 = |a|2 + |c|2, so |c|2 = 0 and
hence b = a. Then, a ∈ V ⊥ so we have V ⊆ (span{a})⊥. But dimV = n− 1 = dim(span{a})⊥,
so V = (span{a})⊥, whence P̃ = P . �

We will now start to investigate geodesics on cones. First, let us give a clear definition.

Definition 6.4. Let C be a k-dimensional cone in Rn together with the metric inherited from
the ambient Euclidean space Rn and let D

dt be the corresponding covariant derivative. We call

a geodesic on C a differentiable map r : I → 9Rn, from an open interval I ⊆ R to 9Rn, such that
r(I) ⊆ C and D

dt 9r(t) = 0 for all t ∈ I.

Note that we do not assume that a geodesic is parametrized by arclength, and hence can
have any (constant) speed.

We will now need a parametrization for an arbitrary n-dimensional cone C in Rn+1. Since for
any R ∈ SO(n+1), a curve r is a geodesic on a cone C if and only if R(r) is a geodesic on R(C),
we may assume without loss of generality that C is directed along L = (0, . . . , 0, 1) ∈ Rn+1. Let
ψ ∈ (0, π/2] be the aperture of C. Then,

C =
{

(x1, . . . , xn+1) ∈ Rn+1 : xn+1 = cosψ
√
x21 + · · ·+ x2n+1

}
=
{

(x1, . . . , xn+1) ∈ Rn+1 : x2n+1 sin2 ψ =
(
x21 + · · ·+ x2n

)
cos2 ψ and xn+1 > 0

}
= {(x1r sinψ, . . . , xnr sinψ, r cosψ) : (x1, . . . , xn) ∈ Sn−1 and r > 0}.

Therefore, any parametrization of the unit sphere Sn−1 will give a natural parametrization of
the cone C. We choose the stereographic projection coordinates from the north pole:

(x1, . . . , xn) =

 2v1∑
i
v2i + 1

, . . . ,
2vn−1∑
i
v2i + 1

,

∑
i
v2i − 1∑

i
v2i + 1

 =

(
2v

|v|2 + 1
,
|v|2 − 1

|v|2 + 1

)
,
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where v = (v1, . . . , vn−1). This defines a coordinate system φ : Rn−1×R+ → C for the cone C by

φ(v, r) =

(
2v

|v|2 + 1
r sinψ,

|v|2 − 1

|v|2 + 1
r sinψ, r cosψ

)
, (6.2)

with inverse

φ−1(x1, . . . , xn+1) =

(
x1

r sinψ − xn
, . . . ,

xn−1
r sinψ − xn

, r

)
, (6.3)

where r :=
(
x21 + · · ·+ x2n+1

)1/2
. Now, the metric g on C is the one inherited from the ambient

Euclidean space Rn+1. In this coordinate system we get

g =
4r2 sin2 ψ

(|v|2 + 1)2

n−1∑
i=1

dvi ⊗ dvi + dr ⊗ dr.

The Christoffel symbols corresponding to this metric are

Γkij =


2
vkδij − viδjk − vjδki

|v|2 + 1
, i 6= n, j 6= n, k 6= n,

− 4r sin2 ψ

(|v|2 + 1)2
δij +

δik + δjk
r

, one and only one of i, j or k is equal to n,

0, else.

The geodesic equations are then

:v +
2| 9v|2v − 4(v · 9v) 9v

|v|2 + 1
+

2 9r 9v

r
= 0, (6.4)

:r − 4r sin2 ψ| 9v|2

(|v|2 + 1)2
= 0. (6.5)

The most important result of this section is the following.

Theorem 6.1. Let r : I → 9Rn+1 be a non-colliding curve, where n ≥ 2. Then, r is a geodesic
on an n-dimensional cone C if and only if r is a geodesic on a 2-dimensional cone D ⊆ C of
the same aperture.

Proof. We first show that if r : I → 9Rn+1 is a non-colliding geodesic on C, then r(I) is in
a 2-dimensional cone D ⊆ C. By definition, we have to show that the curve α : I → Rn+1

defined by α(t) := r(t)/|r(t)| lies on a fixed 2-dimensional plane. To do that, it suffices to show
that { 9α, :α} is everywhere linearly independent while { 9α, :α, ;α} is everywhere linearly dependent
(see [29, Chapter 7, Part B, Theorem 5]).

To show that { 9α, :α} is everywhere linearly independent, suppose that at some point t0 ∈ I
we have :α = λ 9α for some λ ∈ R. Since α · α = 1, we get α · :α = λα · 9α = 0. Taking the second
derivative on both sides of α · α = 1, we then find 9α · 9α = 0 at t0, and so 9r(t0) is parallel to
r(t0). Hence, we can form a colliding curve r̃(t) := r(t0) + (t − t0) 9r(t0), with r̃(t0) = r(t0) and
9̃r(t0) = 9r(t0). But r̃ is solution to the geodesic equations (6.4) and (6.5), so by uniqueness we
have r = r̃. This contradicts the assumption that r is non-colliding.

Now, to show that { 9α, :α, ;α} is everywhere linearly dependent, we will show an explicit non-
trivial linear dependence. In the parametrization (v, r) of the cone (6.2), we have

α =

(
2v

|v|2 + 1
sinψ,

|v|2 − 1

|v|2 + 1
sinψ, cosψ

)
.
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To compute the derivatives 9α, :α, ;α, we insert the geodesic equations (6.4) and (6.5) to eliminate
all second derivatives of (v, r). We obtain

9α =
2 sinψ

(|v|2 + 1)2
((
|v|2 + 1

)
9v − 2(v · 9v)v, 2v · 9v, 0

)
,

:α =
8 sinψ

(|v|2 + 1)3

(
−| 9v|2v +

9r

2r

(
|v|2 + 1

)(
2(v · 9v)v −

(
|v|2 + 1

)
9v
)
,

− 1

2
| 9v|2

(
|v|2 − 1

)
− 9r

r

(
|v|2 + 1

)
v · 9v, 0

)
,

;α =
2 sinψ

(|v|2 + 1)2

(
6 9r2

r2
− 4(1 + 2 sin2 ψ)| 9v|2

(|v|2 + 1)2

)((
|v|2 + 1

)
9v − 2(v · 9v)v, 2v · 9v, 0

)
− 48 9r sinψ

r(|v|2 + 1)3

(
−| 9v|2v,−1

2
| 9v|2

(
|v|2 − 1

)
, 0

)
.

We then find that these expressions satisfy the relation(
4| 9v|2(1 + 2 sin2 ψ)

(|v|2 + 1)2
+

6 9r2

r2

)
9α+

6 9r

r
:α+ ;α = 0.

So α is contained in a 2-dimensional plane and hence r is contained in a 2-dimensional cone D.
Moreover, D ⊆ C for the following reason. Let Q be the affine 2-dimensional plane genera-
ting D, and let P be the affine hyperplane generating C. Since r is non-colliding, we can find
three distinct points in α(I) ⊆ Q ∩ Sn. But Q ∩ Sn is a circle (Proposition 6.1), so we have
three non-collinear points of Q ∩ P . Since an affine 2-dimensional plane is uniquely specified
by three non-collinear points, we have Q ⊆ P , whence D ⊆ C.

We will now show that r is a geodesic on D and that D has aperture ψ. Still assuming the
parametrization (6.2) for C, we have

P = {(x1, . . . , xn, cosψ) : xi ∈ R},

whence

Q = (0, . . . , 0, cosψ) + a + span{w1,w2},

for some a,w1,w2 ∈ {(x1, . . . , xn, 0) : xi ∈ R}. But note that in the parametrization (6.2), C
has an SO(n) symmetry in its first n components. Hence, we may assume that

Q = {(x1, x2, 0, . . . , 0, a, cosψ) : x1, x2 ∈ R},

for some a ≥ 0. Since Q ∩ Sn contains more than one point, we have a2 < 1− cos2 ψ = sin2 ψ,
or equivalently, a = cosϕ sinψ for some ϕ ∈ (0, π/2]. Therefore,

D =
{
r(x1, x2, 0, . . . , 0, cosϕ sinψ, cosψ) : r > 0, x21 + x22 + cos2 ϕ sin2 ψ + cos2 ψ = 1

}
=
{
r(x1, x2, 0, . . . , 0, cosϕ sinψ, cosψ) : r > 0, x21 + x22 = sin2 ϕ sin2 ψ

}
=
{

(r cos θ sinϕ sinψ, r sin θ sinϕ sinψ, 0, . . . , 0, r cosϕ sinψ, r cosψ) : r > 0, θ ∈ R
}
,

and so

r(t) = (r(t) cos θ(t) sinϕ sinψ, r(t) sin θ(t) sinϕ sinψ, 0, . . . , 0, r(t) cosϕ sinψ, r(t) cosψ)

for some functions θ : I → R and r : I → R+. Now, using the inverse transformation (6.3), we
can express r in the coordinates (v, r) = (v1, . . . , vn−1, r) parametrizing C. We find

(v, r) =
(

cos θ cot
ϕ

2
, sin θ cot

ϕ

2
, 0, . . . , 0, r

)
.
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Assuming that r has this form, the geodesic equations (6.4) and (6.5) for r on C are equivalent to

cosϕ = 0,

:θ + 2 9r 9θ/r = 0,

:r − r 9θ2 sin2 ψ = 0.

The first equation shows that D is the 2-dimensional cone of aperture ψ given by

D = {(r cos θ sinψ, r sin θ sinψ, 0, . . . , 0, r cosψ) : r > 0, θ ∈ R}, (6.6)

and the last two equations are precisely the geodesic equations for r on D.

Conversely, this also shows that any geodesic of D is a geodesic of C. Hence, by the SO(n)
symmetry of C in its first n components (in (6.2)) we get that any geodesic on a 2-dimensional
cone of aperture ψ embedded in C is a geodesic on C. �

The following two corollaries will be important for the next section, when we will investigate
the motion of a charged particle in the field of Yang’s monopole.

Corollary 6.1. Let r : I → 9Rn+1 be a non-colliding curve, where n ≥ 2. If r lies on a 2-
dimensional cone D of aperture ψ and :r is orthogonal to r and 9r, then r is a geodesic on D and
hence on the unique n-dimensional cone of aperture ψ containing D.

Proof. By rotation symmetry, we may assume that the 2-dimensional cone D on which r lies
is of the form (6.6), so that

r(t) = (r(t) cos θ(t) sinψ, r(t) sin θ(t) sinψ, 0, . . . , 0, r(t) cosψ),

for some functions r : I → R+ and θ : I → R. This defines a space curve p : I → R3 by taking
the three non-zero components of r. We have that p lies on the cone D̃ ⊆ R3 of aperture ψ
directed along (0, 0, 1), and :p is orthogonal to p and 9p. Hence, :p is always normal to the surface
of the cone D̃, so p is a geodesic on D̃. Therefore, r is a geodesic on D. Now, Proposition 6.3
shows that there exists a unique n-dimensional cone C of aperture ψ containing D, and then
Theorem 6.1 shows that r is a geodesic on that cone. �

Corollary 6.2. Let r : I → 9Rn be a non-colliding geodesic on a k-dimensional cone C. Then,
C is the unique k-dimensional cone containing r(I).

Proof. Let D be any other k-dimensional cone on which r is a geodesic. We want to show that
D = C. First suppose the case k = 2 has been proved. By Theorem 6.1, r is a non-colliding
geodesic on a 2-dimensional cone C̃ ⊆ C of the same aperture as C, and also on a 2-dimensional
cone D̃ ⊆ D of the same aperture as D. Hence, C̃ = D̃, and this cone has the same aperture ψ
as C and D. Proposition 6.3 shows that C is the unique cone of aperture ψ containing C̃ = D̃,
and the same is true for D, so we have C = D. We may thus assume that C and D are
2-dimensional.

Now, since r is non-colliding, we can find three points in r(I) ⊆ C such that no two of
them are collinear with the origin. Using Proposition 6.1, we find that the radial projection
of these points on the unit sphere gives 3 distinct points on a circle. Hence, we get 3 non-
collinear points on the 2-dimensional affine plane P generating C. Now, the 2-dimensional
affine plane Q generating D must also contain these 3 non-collinear points. Since an affine
2-dimensional plane in Rn is uniquely defined by 3 non-collinear points, we have Q = P , and
hence D = C. �
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7 Particle motion in Yang’s monopole and geodesics on cones

In this section we investigate the solutions to the Poincaré problem in 9R5. That is, we solve the
equations (5.1), (5.2) and (5.3) for the motion of a charged particle in the field Yang’s SU(2)
monopole at the origin of Euclidean space R5.

Let us denote a solution to the Poincaré problem in 9R5 by a pair (r, e) of curves r : I → 9R5

and e : I → R3, for some open interval I. More precisely, (r, e) is a solution if the curve
(u, r) : I → R4 × R+ obtained by expressing r in the stereographic projection coordinates from
the north pole (4.5) together with the curve e = (e1, e2, e2) : I → R3 satisfy the equations of
motion (5.1), (5.2) and (5.3) for all t ∈ I.

Our main goal is to show that for every solution (r, e) there is a 4-dimensional cone with
vertex at the origin of R5 on which r is a geodesic. Note that this fact together with Theorem 6.1
show that r is also a geodesic on a 2-dimensional cone, as was the case for every solution to the
Poincaré problem in 9R3. It is quite remarkable that although we are dealing with a non-Abelian
monopole and hence far more intricate equations of motion, the space of solution is almost
identical to the one describing motion of a particle in the simpler Abelian Dirac monopole.

For Dirac’s monopole, the hard part of the proof is to find an explicit expression for the
direction L ∈ 9R3 of the cone. Once we have L, it is very easy to see that r is at a constant angle
from L and that :r is always normal to the surface of the cone. For Yang’s monopole, we will
also find a vector L ∈ 9R5 for which r is at a constant angle, which will then imply that r lies
on a 4-dimensional cone C. However, the proof that r is a geodesic on C is more tricky. We
will show that :r is orthogonal to 9r and r, as we did for Dirac’s monopole, but in R5 this fact is
not sufficient to infer that :r is normal to the surface of the cone. To complete the proof we will
need to use some non-trivial conclusions of the preceding section on higher dimensional cones,
namely, Corollaries 6.1 and 6.2.

Now, looking at the equations of motion (5.1), (5.2) and (5.3) for the Poincaré problem in 9R5,
we immediately see that a colliding curve is a solution if and only if it has constant speed, as
was the case for Dirac’s monopole. Since a constant-speed colliding curve is a geodesic of many
cones, we may exclude these trivial solutions from our discussion. The main result of our paper
is the following.

Theorem 7.1. Let (r, e) be a solution to the Poincaré problem in 9R5. If r is non-colliding, then
r is a geodesic on the 4-dimensional cone directed along the constant vector

L :=

(
(|e|2 − 4r2(A 9u · e))u + 2r2E 9u

2(|u|2 + 1)
,
2r2(A 9u · e)

|u|2 + 1
+
|e|2

4

|u|2 − 1

|u|2 + 1

)
∈ R5 (7.1)

and of aperture ψ given by

cosψ =
|e|
2

(
|e|2

4
+

4r4| 9u|2

(|u|2 + 1)2

)−1/2
.

Proof. We first show that r is a geodesic on some 4-dimensional cone. By Corollary 6.1, it
suffices to show that r lies on a 2-dimensional cone and :r is orthogonal to r and 9r. In the
stereographic projection coordinates from the north pole (u, r) = (u1, . . . , u4, r), we have

r =

(
2ru

|u|2 + 1
, r
|u|2 − 1

|u|2 + 1

)
,

and a straightforward computation shows that

:r · r = :rr − 4r2| 9u|2

(|u|2 + 1)2
, :r · 9r = :r 9r + 4

9rr| 9u|2 + r2 9u · :u

(|u|2 + 1)2
− 8

r2| 9u|2(u · 9u)

(|u|2 + 1)3
.
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By inserting the equations of motion (5.1) and (5.2), we immediately get that these two expres-
sions are equal to zero.

Now, to show that r lies on a 2-dimensional cone, we will follow an approach very similar to
the one in the proof of Theorem 6.1. That is, let α : I → R5 be defined by α(t) := r(t)/|r(t)|.
It suffices to show that α(I) is contained in a 2-dimensional affine plane, or equivalently, that
{ 9α, :α} is everywhere linearly independent while { 9α, :α, ;α} is everywhere linearly dependent. The
proof that { 9α, :α} is everywhere linearly independent is exactly the same as the one in the proof
of Theorem 6.1. Now, we will show an explicit non-trivial linear dependence of { 9α, :α, ;α}. First,
we have

α =

(
2u

|u|2 + 1
,
|u|2 − 1

|u|2 + 1

)
, 9α =

(
2 9u

|u|2 + 1
− 4(u · 9u)u

(|u|2 + 1)2
,

4u · 9u

(|u|2 + 1)2

)
.

We then compute the second and third derivatives of α by inserting the equations of mo-
tion (5.1), (5.2) and (5.3) to eliminate all second and higher derivatives of (u, r). We find

:α =

(
E 9u− 2(A 9u · e)u

r2(|u|2 + 1)
− 8| 9u|2u

(|u|2 + 1)3
+

4 9r

r

(
2(u · 9u)u

(|u|2 + 1)2
−

9u

|u|2 + 1

)
,

2A 9u · e
r2(|u|2 + 1)

− 4| 9u|2(|u|2 − 1)

(|u|2 + 1)3
− 8 9ru · 9u

r(|u|2 + 1)2

)
,

;α =

(
12r 9r(2(A 9u · e)u−E 9u)− |e|2 9u

2r4(|u|2 + 1)
+
|e|2(u · 9u)u

r4(|u|2 + 1)2
+

24| 9u|2(2 9ru− r 9u)

r(|u|2 + 1)3

+
48| 9u|2(u · 9u)u

(|u|2 + 1)4
+

12 9r2

r2

(
9u

|u|2 + 1
− 2(u · 9u)u

(|u|2 + 1)2

)
,− 12 9rA 9u · e

r3(|u|2 + 1)

− |e|2u · 9u

r4(|u|2 + 1)2
+

24 9r| 9u|2(|u|2 − 1)

r(|u|2 + 1)3
− 48| 9u|2u · 9u

(|u|2 + 1)4
+

24 9r2u · 9u

r2(|u|2 + 1)2

)
.

To perform these computations, it is useful to first derive the following identities

u ·E 9u = (|u|2 + 1)A 9u · e,

eAE = − |e|
2u

|u|2 + 1
,

9E 9u = 2
| 9u|2Eu + (u ·E 9u) 9u− (u · 9u)E 9u

|u|2 + 1
.

We then get the simple expression(
|e|2

4r2
+

6 9r2

r2
+

12| 9u|2

(|u|2 + 1)2

)
9α+

6 9r

r
:α+ ;α = 0.

Hence, { 9α, :α, ;α} is everywhere linearly dependent, so r lies on a 2-dimensional cone, and by
Corollary 6.1, r is a geodesic on a 4-dimensional cone C.

We will now give an explicit expression for the cone C. By differentiating the vector L given
by (7.1) and inserting the equations of motion, we see that L is constant. Moreover,

r · L
|r||L|

=
|e|2

4|L|
=
|e|
2

(
|e|2

4
+

4r4| 9u|2

(|u|2 + 1)2

)−1/2
,

which is also constant. Since r is non-colliding we have 9u 6= 0, so this expression can be written
as the cosine of some angle ψ ∈ (0, π/2]. Hence, r lies on the 4-dimensional cone of aperture ψ
directed along L. But we showed that r is a geodesic on some 4-dimensional cone C, and by
Corollary 6.2, C is the unique 4-dimensional cone containing r(I). Hence, C is the cone of
aperture ψ directed along L. �
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By this theorem, the problem reduces to the geodesic equations on a 4-dimensional cone,
which in turn reduces to the geodesic equations on a 2-dimensional cone by Theorem 6.1.
Geodesics on 2-dimensional cones were discussed in Section 2.

Acknowledgements

The author is grateful to Professor Niky Kamran for his constant guidance and invaluable
suggestions. The author would also like to thank the anonymous referees who provided helpful
comments, corrections and reference suggestions. This work was supported by the NSERC
USRA program, grant number RGPIN 105490-2011.

References

[1] Bai Z., Meng G., Wang E., On the orbits of magnetized Kepler problems in dimension 2k + 1, J. Geom.
Phys. 73 (2013), 260–269, arXiv:1302.7271.

[2] Cho Y.M., Higher-dimensional unifications of gravitation and gauge theories, J. Math. Phys. 16 (1975),
2029–2035.

[3] Dirac P.A.M., Quantised singularities in the electromagnetic field, Proc. R. Soc. Lond. Ser. A 133 (1931),
60–72.
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