|
SIGMA 10 (2014), 094, 8 pages arXiv:1308.1141
https://doi.org/10.3842/SIGMA.2014.094
Contribution to the Special Issue on New Directions in Lie Theory
$\mathcal{A}=\mathcal{U}$ for Locally Acyclic Cluster Algebras
Greg Muller
Department of Mathematics, Louisiana State University, USA
Received May 16, 2014, in final form August 25, 2014; Published online September 03, 2014
Abstract
This note presents a self-contained proof that acyclic and locally acyclic cluster algebras coincide with their upper cluster algebras.
Key words:
cluster algebras; upper cluster algebras; acyclic cluster algebras.
pdf (352 kb)
tex (13 kb)
References
-
Berenstein A., Fomin S., Zelevinsky A., Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52, math.RT/0305434.
-
Fock V., Goncharov A., Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. (2006), 1-211, math.AG/0311149.
-
Fomin S., Shapiro M., Thurston D., Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), 83-146, math.RA/0608367.
-
Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), 497-529, math.RT/0104151.
-
Fomin S., Zelevinsky A., Cluster algebras: notes for the CDM-03 conference, in Current Developments in Mathematics, Int. Press, Somerville, MA, 2003, 1-34, math.RT/0311493.
-
Fomin S., Zelevinsky A., Cluster algebras. IV. Coefficients, Compos. Math. 143 (2007), 112-164, math.RA/0602259.
-
Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Weil-Petersson forms, Duke Math. J. 127 (2005), 291-311, math.QA/0309138.
-
Gekhtman M., Shapiro M., Vainshtein A., Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, Vol. 167, Amer. Math. Soc., Providence, RI, 2010.
-
Keller B., Cluster algebras and cluster categories, Bull. Iranian Math. Soc. 37 (2011), 187-234.
-
Matherne J., Muller G., Computing upper cluster algebras, Int. Math. Res. Not., to appear, arXiv:1307.0579.
-
Muller G., Skein algebras and cluster algebras of marked surfaces, arXiv:1204.0020.
-
Muller G., Locally acyclic cluster algebras, Adv. Math. 233 (2013), 207-247, arXiv:1111.4468.
|
|