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Abstract. Principal comodule algebras can be thought of as objects representing principal
bundles in non-commutative geometry. A crucial component of a principal comodule alge-
bra is a strong connection map. For some applications it suffices to prove that such a map
exists, but for others, such as computing the associated bundle projectors or Chern–Galois
characters, an explicit formula for a strong connection is necessary. It has been known for
some time how to construct a strong connection map on a multi-pullback comodule algebra
from strong connections on multi-pullback components, but the known explicit general for-
mula is unwieldy. In this paper we derive a much easier to use strong connection formula,
which is not, however, completely general, but is applicable only in the case when a Hopf
algebra is co-commutative. Because certain linear splittings of projections in multi-pullback
comodule algebras play a crucial role in our construction, we also devote a significant part
of the paper to the problem of existence and explicit formulas for such splittings. Finally,
we show example application of our work.
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1 Introduction

Let H be a Hopf algebra (with bijective antipode), interpreted as a Peter–Weyl algebra of
functions on a quantum group. Principal H-comodule algebras can be loosely viewed as the
algebras of appropriate classes of functions on (non-commutative) principal bundles ([2] makes
the relationship explicit in the classical case). A crucial ingredient in the definition of principal
comodule algebra is a so called strong connection map. For some applications it suffices to prove
that a strong connection map exists, for instance when proving principality of a comodule algebra
(see, e.g., [17]). Other applications (see, e.g., [3, 13, 14, 18]), such as computing the associated
bundle projector or Chern–Galois character [5], call for an explicit formula for this map.

Piecewise principal comodule algebras [7, 12] is an interesting class of principal comodule
algebras for which a fair amount of examples recently appeared in the literature (see, e.g., [1, 4, 8,
10, 14, 15, 16, 17, 18]). They can be understood as being glued (constructed as a multi-pullback)
from simpler parts which are principal. In [12] (cf. the generalization in [18]) it was proven that
piecewise principal comodule algebras are, in fact, principal. The paper contains a derivation
of the explicit formula for a strong connection on a pullback of two principal extensions from
the “local” strong connections on pullback components and an appropriate choice of splittings
of the gluing maps. If the piecewise comodule algebra is a multipullback one can present this
multipullback as an iterated pullback, and then iterate the formula. Unfortunately, in practice,
already the second iteration of the formula from [12] becomes overly complicated.

?This paper is a contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in
honor of Marc A. Rieffel. The full collection is available at http://www.emis.de/journals/SIGMA/Rieffel.html
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In the paper we derive, under the assumption of the co-commutativity of the Hopf algebra,
a much simpler strong connection formula (which does not need to be iterated, nor requires
putting the multipullback in the iterated form – the latter being complicated and error prone
by itself). While the assumption of co-commutativity limits severely the applicability of the
formula, it is worth pointing out that many of the known piecewise principal comodule algebras,
such as those considered in [1, 14, 15, 16, 18, 17] are either C(Zn) or O(U(1))-comodule algebras,
hence our result could have been used to compute strong connections for these examples. The
strong connection formula presented in this paper was inspired (very loosely) by the proof of [22,
Theorem 3.3.2].

The plan of the paper is as follows: Section 2 contains some preliminaries about principal
comodule algebras and piecewise principality. In Section 3 we present the explicit formula for
a strong connection, and prove that it is indeed a strong connection, as long as the Hopf algebra is
co-commutative. Because the strong connection formula uses the colinear and unital splittings
of projections onto pieces, we devote Section 4 to the presentation of the explicit procedure
for constructing such splittings from the appropriate splittings of the gluing maps. Note that
Theorem 2 can be viewed as the strengthening of [6, Proposition 9] (cf. [19, Theorem 7]) –
instead of merely showing that, for each element in the multipullback component, there exists
an element in the multipullback projected to this element we explicitly construct the whole
(co-)linear and unital splitting.

As some of the splittings of gluing maps used in the construction of the splitting from Theo-
rem 2 are required to have fairly non-obvious properties, Section 5 is devoted to showing when
such a splittings are guaranteed to exist, as well as to their semi-explicit constructions. Lemma 1,
which links the existence of certain partitions of a vector space generated by a collection of
vector subspaces to the distributivity of the lattice generated by those subspaces, is crucial for
the results in this section.

Finally, in Section 6, we derive a formula for a strong connection on a non-commutative
sphere S2

RT introduced in [17] as a quantum Z2-principal bundle. To this end, and to provide
comparison, we use two methods – the one from [12] and the one introduced in this paper.

2 Preliminaries

2.1 Hopf algebra and comodule-related notation

We work over a fixed ground field K and, unless stated otherwise, all vector spaces are under-
stood to be K-vector spaces and the unadorned tensor product is understood to be the algebraic
tensor product over K. The comultiplication, counit and the antipode of a Hopf algebra H
are denoted by ∆, ε and S, respectively. Let P be a right comodule algebra. We denote by
∆P : P → P ⊗H the right H-coaction on P , and by

P coH :=
{
p ∈ P |∆P (p) = p⊗ 1H

}
the subalgebra of coaction invariant elements. Instead of writing ∆’s and ∆P ’s we usually
employ the Heynemann–Sweedler notation with the summation symbol suppressed, e.g.,

∆(h) =: h(1) ⊗ h(2), ∆P (p) =: p(0) ⊗ p(1).

2.2 Principal comodule algebras

Let H be a Hopf algebra with bijective antipode, and let P be a right H-comodule algebra.
Then P is a principal comodule algebra if and only if there exists a linear map

` : H → P ⊗ P, `(h) =: `(h)〈1〉 ⊗ `(h)〈2〉
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(note the Sweedler-like notation with summation sign supressed) satisfying the following condi-
tions

`(1H) = 1P ⊗ 1P , (1a)

`(h)〈1〉`(h)〈2〉 = ε(h), (1b)

`(h(1))
〈1〉 ⊗ `(h(1))

〈2〉 ⊗ h(2) = `(h)〈1〉 ⊗ `(h)〈2〉(0) ⊗ `(h)〈2〉(1), (1c)

S(h(1))⊗ `(h(2))
〈1〉 ⊗ `(h(2))

〈2〉 = `(h)〈1〉(1) ⊗ `(h)〈1〉(0) ⊗ `(h)〈2〉. (1d)

Such a map, if it exists, is called a strong connection on P [5, 9, 11]. Strong connections are
usually non-unique.

2.3 Multi-pullbacks of algebras

Let J be a finite set, and let{
πij : Ai −→ Aij = Aji

}
i,j∈J, i6=j (2)

be a family of algebra homomorphisms to which we will occasionally refer as “gluing maps”.

Definition 1 ([6, 20]). The multi-pullback algebra Aπ of a family (2) of algebra homomorphisms
is defined as

Aπ :=

{
(ai)i∈J ∈

∏
i∈J

Ai

∣∣∣∣πij(ai) = πji (aj), ∀ i, j ∈ J, i 6= j

}
.

Definition 2 ([19]). A family (2) of algebra homomorphisms is called distributive if and only
if all of them are surjective and their kernels generate distributive lattices of ideals.

Let (πij : Ai → Aij)i,j∈J, i6=j be a family of surjective algebra homomorphisms. For any

distinct i, j, k we put Aijk := Ai/(kerπij + kerπik) and take [·]ijk : Ai → Aijk to be the canonical
surjections. Next, we introduce the family of maps

πijk : Aijk −→ Aij/π
i
j

(
kerπik

)
, [ai]

i
jk 7−→ πij(ai) + πij

(
kerπik

)
.

They are isomorphisms when πij ’s are epimorphisms.

Definition 3. We say [6, Proposition 9] that a family (πij : Ai → Aij)i,j∈J, i6=j of algebra
epimorphisms satisfies the cocycle condition if and only if, for all distinct i, j, k ∈ J ,

1) πij(kerπik) = πji
(

kerπjk
)
,

2) the isomorphisms φijk :=
(
πijk
)−1 ◦ πjik : Ajik → Aijk satisfy φikj = φijk ◦ φ

jk
i .

Observe that, for all distinct i, j, k ∈ J and any ai ∈ Ai, aj ∈ Aj ,

[ai]
i
jk = φijk

(
[aj ]

j
ik

)
⇔ πjik

(
[aj ]

j
ik

)
= πijk

(
[ai]

i
jk

)
⇔ πij(ai)− π

j
i (aj) ∈ π

i
j

(
kerπik

)
. (3)

One can prove ([6], cf. [19], see also Theorem 2 in this paper) that the cocycle condition to-
gether with distributivity guarantees that all projections on components of a multipullback are
surjective (in fact all projections on submultipullbacks are surjective, but we will not make use
of that fact).
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2.4 Piecewise principal comodule algebras

Definition 4 (cf. [12, Definition 3.7]). A family of surjective algebra homomorphisms {πi : P →
Pi}i∈{1,...,N} is called a covering [12] if and only if

1)
⋂
i∈{1,...,N} kerπi = {0},

2) the family of ideals (kerπi)i∈{1,...,N} generates a distributive lattice with + and ∩ as meet
and join, respectively.

Piecewise principal comodule algebras generalize the notion of (algebras of functions on)
classical spaces which are locally principal, but with respect to closed instead of open coverings –
hence the use of the term “piecewise” instead of “locally”.

Definition 5 (see [12, Definition 3.8]). An H-comodule algebra P is called piecewise principal
if there exists a finite family {πi : P → Pi}i∈J of surjective H-comodule algebra morphisms such
that

1) the restrictions πi
∣∣
P coH : P coH → P coH

i form a covering,

2) the Pi’s are principal H-comodule algebras.

Note that, for all i ∈ J , πi(P
coH) ⊆ P coH

i by virtue of right H-colinearity of πi. Hence, we
were allowed to consider πi

∣∣
P coH in the statement of Definition 5 as a map with codomain P coH

i

without any additional assumptions.
By [12, Corollary 3.9] a piecewise principal comodule algebra is principal. Note that any

piecewise principal comodule algebra can be presented as a multipullback comodule algebra
with the gluing maps being comodule algebra morphisms [7].

3 Strong connection formula

In this section we present an explicit (and arguably simple) expression for a strong connection
on a piecewise principal H-comodule algebra where H is a co-commutative Hopf algebra. Re-
gretfully, the co-commutativity assumption is used crucially in the proof of the correctness of
the formula, and so we have little hopes of generalizing further the method which led to the
derivation of this strong connection formula.

Theorem 1. Let H be a cocomutative Hopf algebra. Let {πi : P → Pi}i∈{0,...,n} be a piecewise
principal H-comodule algebra, and let {`i : H → Pi ⊗ Pi}i∈{0,...,n} denote a family of strong
connections on Pi’s. For any i ∈ {0, . . . , n}, let Vi be an H sub-comodule of Pi such that
`i(H) ⊆ Vi ⊗ Vi and let αi : Vi → P be a unital, colinear splitting of πi, i.e., πi ◦ αi = idVi. For
brevity, denote for i ∈ {0, . . . , n}, h ∈ H

θi(h) := ε(h)− αi
(
`i(h)〈1〉

)
αi
(
`i(h)〈2〉

)
,

Ti(h) := θi(h(1))θi+1(h(2)) · · · θn(h(n−i+1)), Tn+1(h) := ε(h).

Then the linear map ` : H → P ⊗ P defined for all h ∈ H by the formula

`(h) =

n∑
i=0

αi
(
`i(h(1))

〈1〉)⊗ αi(`i(h(1))
〈2〉)Ti+1(h(2))

is a strong connection on P .

Note that, in particular, Tn(h) = θn(h), for all h ∈ H. Note also that we consider splittings
from Vi’s instead of splittings from Pi’s because the former are much easier to construct.
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Proof. Note that any co-commutative Hopf algebra has bijective (in fact involutive) antipode.
We need to prove that the map ` defined in the theorem, satisfies all the properties (1).

First note that, by the colinearity of αj ’s, colinear properties (1d), (1c) of `j ’s and the co-
commutativity of H we have, that αj(`j(h)〈1〉)αj(`j(h)〈2〉) is a coaction invariant element of P
for any j ∈ {0, . . . , n} and h ∈ H, and hence also Ti(h) is a coaction invariant element of P for
any i ∈ {0, . . . , n+ 1} and h ∈ H

ρH
(
αj
(
`j(h)〈1〉

)
αj
(
`j(h)〈2〉

))
= αj

(
`j(h)〈1〉

)
(0)αj

(
`j(h)〈2〉

)
(0) ⊗ αj

(
`j(h)〈1〉

)
(1)αj

(
`j(h)〈2〉

)
(1)

= αj
(
`j(h(2))

〈1〉)αj(`j(h(2))
〈2〉)⊗ S(h(1))h(3)

= αj
(
`j(h(1))

〈1〉)αj(`j(h(1))
〈2〉)⊗ S(h(2))h(3)

= αj
(
`j(h)〈1〉

)
αj
(
`j(h)〈2〉

)
⊗ 1.

In the penultimate equality we used co-commutativity of H to swap Sweedler indices (1) and (2)

to be able to use the antipode property. In order to prove that ` is left colinear (equation (1d))
we use the left colinearity of `i’s and the right colinearity of αi’s

`(h)〈1〉(1) ⊗ `(h)〈1〉(0) ⊗ `(h)〈2〉

=
n∑
i=0

αi
(
`i(h(1))

〈1〉)
(1) ⊗ αi

(
`i(h(1))

〈1〉)
(0) ⊗ αi

(
`i(h(1))

〈2〉)Ti+1(h(2))

=
n∑
i=0

`i(h(1))
〈1〉

(1) ⊗ αi(`i(h(1))
〈1〉

(0))⊗ αi
(
`i(h(1))

〈2〉)Ti+1(h(2))

=
n∑
i=0

S(h(1))⊗ αi
(
`i(h(2))

〈1〉)⊗ αi(`i(h(2))
〈2〉)Ti+1(h(3))

= S(h(1))⊗ `(h(2))
〈1〉 ⊗ `(h(2))

〈2〉.

The right colinearity (equation (1c)) of ` follows from the H-coaction invariance of Ti(h)’s, the
right colinearity of `i’s, the right colinearity of αi’s, and the co-commutativity of H

`(h)〈1〉 ⊗ `(h)〈2〉(0) ⊗ `(h)〈2〉(1)

=

n∑
i=0

αi
(
`i(h(1))

〈1〉)⊗ αi(`i(h(1))
〈2〉)

(0)Ti+1(h(2))⊗ αi
(
`i(h(1))

〈2〉)
(1)

=

n∑
i=0

αi
(
`i(h(1))

〈1〉)⊗ αi(`i(h(1))
〈2〉

(0)

)
Ti+1(h(2))⊗ `i(h(1))

〈2〉
(1)

=

n∑
i=0

αi
(
`i(h(1))

〈1〉)⊗ αi(`i(h(1))
〈2〉)Ti+1(h(3))⊗ h(2)

=

n∑
i=0

αi
(
`i(h(1))

〈1〉)⊗ αi(`i(h(1))
〈2〉)Ti+1(h(2))⊗ h(3)

= `(h(1))
〈1〉 ⊗ `(h(1))

〈2〉 ⊗ h(3).

Here, in the penultimate inequality we used the co-commutativity of H exchanging Sweedler
indices (2) and (3).

In order to prove that ` is unital (equation (1a)), note first that for any i ∈ {0, . . . , n}

θi(1) = ε(1)− αi
(
`i(1)〈1〉

)
αi
(
`i(1)〈2〉

)
= 1− αi(1)αi(1) = 1− 1 = 0,
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because ε, all `i’s and all αi’s are unital. It follows that Ti(1) = 0 for all i ∈ {0, . . . , n}, and
Tn+1 = ε by definition, hence

`(1) =
n∑
i=0

αi
(
`i(1)〈1〉

)
⊗ αi

(
`i(1)〈2〉

)
Ti+1(1) = αn

(
`n(1)〈1〉

)
⊗ αn

(
`n(1)〈2〉

)
Tn+1(1) = 1⊗ 1,

where we used again the unitality of αn and `n.
Note now that for all i ∈ {0, . . . , n}, and h ∈ H

Ti(h) = Ti+1(h)− αi
(
`i(h(1))

〈1〉)αi(`i(h(1))
〈2〉)Ti+1(h(2)).

Indeed,

Ti(h) = θi(h(1))Ti+1(h(2)) = ε(h(1))Ti+1(h(2))− αi
(
`i(h(1))

〈1〉)αi(`i(h(1))
〈2〉)Ti+1(h(2))

= Ti+1(h)− αi
(
`i(h(1))

〈1〉)αi(`i(h(1))
〈2〉)Ti+1(h(2)).

By applying this formula to T0(h) and keeping to expand with it the leftmost summand of the
resulting expansion we obtain easily

T0(h) = ε(h)−
n∑
i=0

αi
(
`i(h(1))

〈1〉)αi(`i(h(1))
〈2〉)Ti+1(h(2)). (4)

On the other hand, for all h ∈ H and i ∈ {0, . . . , n}, as αi is the splitting of πi it follows that

πi(θi(h)) = ε(h)− πi
(
αi(`i(h)〈1〉)

)
πi
(
αi(`i(h)〈2〉)

)
= ε(h)− `i(h)〈1〉`i(h)〈2〉 = ε(h)− ε(h) = 0.

Hence

πi(Tj(h)) = 0, for all i ≥ j, i ∈ {0, . . . , n}, h ∈ H.

In particular, πi(T0(h)) = 0 for all i ∈ {0, . . . , n} and h ∈ H. It follows that T0(h) = 0 for all
h ∈ H because

⋂n
i=0 kerπi = {0}, as {πi : P → Pi}i∈{0,...,n} is a covering. The last fact is an

immediate consequence of [12, Theorem 3.3] and [12, Corollary 3.7].
Combining this with the equation (4) we obtain that for all h ∈ H

`(h)〈1〉`(h)〈2〉 =
n∑
i=0

αi
(
`i(h(1))

〈1〉)αi(`i(h(1))
〈2〉)Ti+1(h(2)) = ε(h),

i.e., ` satisfies equation (1b) as needed. �

The expression for a strong connection provided in the above theorem requires the unital and
colinear splittings of projections πi to be given. The existence of such a splittings is guaranteed by
the [12, Lemma 3.1] and [12, Theorem 3.3], but the mere existence does not suffice for someone
desirous of finding the explicit formula. The proof of [12, Lemma 3.1] involves constructing
a unital and colinear splitting of surjective comodule algebra map π from a unital and linear
splitting of restriction of π to the subalgebra of coaction invariant elements (which always exists)
utilizing the strong connection. Hence, we cannot use even the slight simplification provided by
the proof of [12, Lemma 3.1].

In practice, we expect that in many simpler cases, the appropriate splittings will not be
difficult to guess. However, for our result to be more widely applicable in practice, we will
examine the explicit construction of colinear and unital splittings of multipullback comodule
algebra projections on components which does not assume the existence of a strong connection
on a multipullback comodule algebra (recall that a piecewise principal comodule algebra can
always be presented as a multipullback).
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4 Colinear splittings of piecewise principal comodule algebras

The result presented in this section allows to explicitly construct linear (colinear when approp-
riate) and unital splittings of projections on components of a multipullback (comodule) algebra.

Theorem 2. Suppose that a family (2) is distributive and satisfies the cocycle condition. More-
over suppose that there exists two families αij , β

i
j : Aij → Ai, i, j ∈ J , j 6= i of linear (colinear)

splittings of πij’s such that all βij’s are unital and for all distinct i, j, k ∈ J we have

αij
(
πij
(

kerπik
))
⊆ kerπik. (5)

Let i ∈ J , let |J | = n + 1 and let κ : {0, . . . , n} → J be a bijection such that κ0 = i, where we
denote κj := κ(j) to easy the notation. Then a unital and linear (colinear) splitting αi : Ai → Aπ

of πi : Aπ → Ai can be given explicitly, for any a ∈ Ai as αi(a) := (aj)j∈J , where ai := a and
aκm+1 := amκm+1

for any 0 ≤ m < n. The collections {akκm+1
}0≤k≤m ⊆ Aκm+1, for 0 ≤ m < n are

defined by the following inductive formula

a0
κm+1

:= βκm+1
κ0

(
πκ0
κm+1

(aκ0)
)
,

ak+1
κm+1

:= akκm+1
− ακm+1

κk+1

(
πκm+1
κk+1

(
akκm+1

)
− πκk+1

κm+1(aκk+1
)
)

(6)

for 0 ≤ k < m.

Proof. It is clear that because all the maps involved in the definition of αi are unital and
linear (colinear if need be) then also αi is linear (resp. colinear). The proof of unitality is
slightly more subtle and it requires a simple induction. Pick some bijection κ : {0, . . . , n} → J
where κ0 = i. Define (aj)j∈J := αi(1). We need to show that aj = 1 for all j ∈ J . Indeed,
aκ0 = ai = 1 by definition. Suppose we have proven that aj = 1 for all 0 ≤ j ≤ m < n. Then
using the equation (6) we get a0

κm+1
= β

κm+1
κ0 (πκ0

κm+1
(aκ0)) = β

κm+1
κ0 (πκ0

κm+1
(1)) = 1 as both πκ0

κm+1

and β
κm+1
κ0 are unital. Suppose now that we have proven that akκm+1

= 1 for all 0 ≤ k < m.
Then, equation (6) yields

ak+1
κm+1

= akκm+1
− ακm+1

κk+1

(
πκm+1
κk+1

(akκm+1
)− πκk+1

κm+1(aκk+1
)
)

= 1− ακm+1
κk+1

(
πκm+1
κk+1

(1)− πκk+1
κm+1(1)

)
= 1− ακm+1

κk+1
(0) = 1.

Now it remains to show that αi(a) ∈ Aπ for all a ∈ Ai. The inductive proof essentially follows
the steps of the proof of [6, Proposition 9]. We will show that for any 0 ≤ m ≤ n we have

π
κj
κl (aκj ) = πκlκj (aκl), for all j, l ∈ {0, . . . ,m}, j 6= l. (7)

For m = 0 this condition is emptily satisfied. Suppose we have proven the above condition for
some m. In order to demonstrate it for m + 1, we prove by induction that for any 0 ≤ k ≤ m,
where m < n, we have

π
κj
κm+1(aκj ) = πκm+1

κj

(
akκm+1

)
, for all 0 ≤ j ≤ k. (8)

If k = 0 then substituting the definition of a0
κm+1

yields (as β
κm+1
κ0 is a splitting of π

κm+1
κ0 )

πκm+1
κ0

(a0
κm+1

) = πκm+1
κ0

(
βκm+1
κ0

(
πκ0
κm+1

(aκ0)
))

= πκ0
κm+1

(aκ0).

Suppose now that we have proven condition (8) for some 0 ≤ k < m. Pick any 0 ≤ j ≤ k. Then
by (inductively assumed) condition (7) and equation (3) we have

[aκj ]
κj
κk+1κm+1 = φ

κjκk+1
κm+1

(
[aκk+1

]
κk+1
κjκm+1

)
. (9)
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Then it follows that

[
akκm+1

]κm+1

κjκk+1

by condition (8)
and equation (3)

= φ
κm+1κj
κk+1

(
[aκj ]

κj
κm+1κk+1

)
by equation (9)

= φ
κm+1κj
κk+1

(
φ
κjκk+1
κm+1

(
[aκk+1

]
κk+1
κjκm+1

)) by the cocycle
condition

= φ
κm+1κk+1
κj

(
[aκk+1

]
κk+1
κjκm+1

)
.

This equality, again by equation (3), is equivalent to the following condition

πκm+1
κk+1

(
akκm+1

)
− πκk+1

κm+1(aκk+1
) ∈ πκm+1

κk+1

(
kerπκm+1

κj

)
.

Because the above relation “is an element of” holds for an arbitrary 0 ≤ j ≤ k it implies
immediately that

πκm+1
κk+1

(
akκm+1

)
− πκk+1

κm+1(aκk+1
) ∈

⋂
0≤j≤k

πκm+1
κk+1

(
kerπκm+1

κj

)
. (10)

Then

ακm+1
κk+1

(
πκm+1
κk+1

(
akκm+1

)
− πκk+1

κm+1(aκk+1
)
) by condition (10)

∈ ακm+1
κk+1

 ⋂
0≤j≤k

πκm+1
κk+1

(
kerπκm+1

κj

)
by injectivity of α

κm+1
κk+1

∈
⋂

0≤j≤k
ακm+1
κk+1

(
πκm+1
κk+1

(
kerπκm+1

κj

)) by equation (5)

⊆
⋂

0≤j≤k
kerπκm+1

κj ,

that is

ακm+1
κk+1

(
πκm+1
κk+1

(
akκm+1

)
− πκk+1

κm+1(aκk+1
)
)
∈
⋂

0≤j≤k
kerπκm+1

κj .

The above equation implies immediately, that for all 0 ≤ l ≤ k

πκm+1
κl

(
ak+1
κm+1

)
= πκm+1

κl

(
akκm+1

)
− πκm+1

κl

(
ακm+1
κk+1

(
πκm+1
κk+1

(
akκm+1

)
− πκk+1

κm+1(aκk+1
)
))

= πκm+1
κl

(
akκm+1

)
= πκlκm+1

(aκl),

where, in the second equality we used the inductive assumption. Moreover, using the fact that
α
κm+1
κk+1 is a splitting of π

κm+1
κk+1 we obtain

πκm+1
κk+1

(
ak+1
κm+1

)
= πκm+1

κk+1

(
akκm+1

)
− πκm+1

κk+1

(
ακm+1
κk+1

(
πκm+1
κk+1

(
akκm+1

)
− πκk+1

κm+1(aκk+1
)
))

= πκm+1
κk+1

(
akκm+1

)
−
(
πκm+1
κk+1

(
akκm+1

)
− πκk+1

κm+1(aκk+1
)
)

= π
κk+1
κm+1(aκk+1

),

which ends the proof. �

At this point, the skeptical reader might be excused for doubting the applicability of Theo-
rem 2. Indeed, while the existence of unital and linear splittings βij ’s of πij ’s follows immediately

from the surjectivity of πij ’s, and the existence of colinear splittings is assured (and assisted in
explicit construction) by [12, Lemma 3.1] if all the Ai’s are principal comodule algebras, it is
not clear how to find the linear splittings αij satisfying equation (5) nor that they exist at all in
general case. Fortunately, the results from the next section, interesting in their own right, not
only assure the existence of splittings αij satisfying equation (5) under no stronger assumptions
than those of Theorem 2, but they also provide the method of their (semi)-explicit construction.
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5 Colinear splittings of principal comodule algebras

5.1 Partitions of sets

Let A be a set and let Ai, i ∈ J be a fixed finite family of subsets of A. For any Γ ∈ 2J we
denote for brevity

AΓ :=
⋂
i∈Γ

Ai. (11)

Obviously AΓ1 ∩AΓ2 = AΓ1∪Γ2 . Also A∅ = A by convention. It is easy to see that Ai’s generate
a partition {BΓ}Γ∈2J of A (i.e., all BΓ’s are disjoint and A =

⋃
Γ∈2J BΓ) such that

AΓ =
⋃

Γ′∈2J |Γ⊆Γ′

BΓ′ , for all Γ ∈ 2J .

Indeed, the partition can be described explicitly, for all Γ ∈ 2J by the formula

BΓ := {x ∈ A | ∀ i ∈ J, x ∈ Ai ⇔ i ∈ Γ}.

5.2 Partitions of vector spaces

Let now A be a vector space and let Ai, i ∈ J be a fixed finite family of vector subspaces
of A. AΓ, for any Γ ∈ 2J is defined as in equation (11). We want to define a linear counterpart
of an associated partition {BΓ}Γ defined above for sets. Similarly to plain sets, vector sub-
spaces can be ordered by the set inclusion, and the resulting ordered set is a lattice, with
subspace intersection (V1 ∩ V2) serving as infimum and subspace sum (V1 + V2) playing the role
of supremum. The problem is that this lattice is not, in general, distributive. It turns out that
the assumption that the subspaces Ai, i ∈ J generate a distributive lattice is pivotal for proving
our desired result, stated immediately below:

Lemma 1. Let A be a linear vector space and let Ai, i ∈ I be a finite family of vector subspaces
of A generating a distributive lattice. A has a linear basis B =

⋃
Γ∈2I BΓ, where BΓ ⊆ AΓ,

Γ ∈ 2I , such that subsets BΓ are all disjoint and satisfy the following property

AΓ = Span

 ⋃
Γ′∈2I , Γ′⊇Γ

BΓ′

 (12)

for all Γ ∈ 2I .

Proof. First fix a linear order ≤ on 2I subject to the condition

Γ1 ⊇ Γ2 ⇒ Γ1 ≤ Γ2, for all Γ1,Γ2 ∈ 2I . (13)

It is immediate that the minimal element in this order is I and maximal is ∅. Note the following
property of ≤ which will be used later

Γ > Γ′ ⇒ Γ ∪ Γ′ ⊃ Γ, for all Γ,Γ′ ∈ 2I . (14)

Indeed, assume Γ > Γ′. Γ ∪ Γ′ ⊇ Γ always, so we need just to show that the equality leads
to contradiction. Suppose that Γ ∪ Γ′ = Γ. This is equivalent to Γ ⊇ Γ′ which implies by
equation (13) that Γ ≤ Γ′ contradicting the assumption Γ > Γ′.

The sets BΓ, Γ ∈ 2I can be generated inductively (with respect to ≤) as follows
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1) BI is some linear basis of AI ,

2) BΓ, for Γ > I, is chosen as a maximal subset of AΓ such that
⋃

Γ′≤Γ BΓ′ is linearly inde-
pendent.

It is immediate by construction of BΓ’s that B :=
⋃

Γ∈2I BΓ is a linear basis of A and that all
BΓ’s are disjoint. Also by construction, BΓ′ ⊆ AΓ, Γ ∈ 2I whenever Γ ⊆ Γ′, which implies that
half of property (12) is trivially satisfied:

Span

 ⋃
Γ′∈2I ,Γ′⊇Γ

BΓ′

 ⊆ AΓ

for all Γ ∈ 2I . Finally, it is immediate that

AΓ ⊆ Span

 ⋃
Γ′∈2I ,Γ′≤Γ

BΓ′

 . (15)

We will prove the second half of property (12) by induction on ≤.
1. I is minimal in 2I with respect to ≤. Then by definition of BI we have

AI = Span(BI) = Span

 ⋃
Γ′∈2I ,Γ′⊇I

BΓ′

 .

2. Suppose we have proven equation (12) for all Γ′ < Γ. For any a ∈ A, denote by {αΓ(a)}Γ∈2I

the unique family of vectors such that a =
∑

Γ∈2I
αΓ(a) and that αΓ(a) ∈ Span(BΓ) for all Γ ∈ 2I

(they are unique because B is a basis and BΓ’s are disjoint). By (15) αΓ′(a) = 0 whenever
a ∈ AΓ and Γ′ > Γ, i.e.,

a =
∑

Γ′∈2I ,Γ′≤Γ

αΓ′(a), for all a ∈ AΓ. (16)

Let a ∈ AΓ. Define v := a− αΓ(a). By equation (16)

AΓ 3 v =
∑

Γ′∈2I ,Γ′<Γ

αΓ′(a) ∈
∑

Γ′∈2I ,Γ′<Γ

AΓ′ ,

hence

v ∈ AΓ ∩

 ∑
Γ′∈2I ,Γ′<Γ

AΓ′

 by distributivity of lattice
generated by Ai’s

=
∑

Γ′∈2I ,Γ′<Γ

AΓ′∪Γ

by equation (14)
Γ ⊂ Γ ∪ Γ′ if Γ′ < Γ

⊆
∑

Γ′∈2I ,Γ′⊃Γ

AΓ′

by inductive assumption,
as Γ′ < Γ if Γ′ ⊃ Γ

⊆ Span

 ⋃
Γ′∈2I ,Γ′⊃Γ

BΓ′

 .

It follows that

a = αΓ(a) + v ∈ Span(BΓ) + Span

 ⋃
Γ′∈2I ,Γ′⊃Γ

BΓ′

 = Span

 ⋃
Γ′∈2I ,Γ′⊇Γ

BΓ′


as needed. �
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The following result is a common knowledge:

Lemma 2. Let π : A→ B be a linear map, and let {Ai}i∈I be a finite family of vector subspaces

of A. Assume that kerπ ∩
(∑
i∈I

Ai

)
=
∑
i∈I

(kerπ ∩Ai). Then

π

(⋂
i∈I

Ai

)
=
⋂
i∈I

π(Ai).

Lemma 3. Let π : A→ B be a linear epimorphism, and let {Ai}i∈I be a finite family of vector
subspaces of A such that {Ai}i∈I ∪ {kerπ} generates a distributive lattice of vector subspaces.
Then there exists a linear splitting α : B → A of π such that α(π(Ai)) ⊆ Ai for all i ∈ I.

Proof. Let B :=
⋃

Γ∈2I BΓ be a linear basis of B satisfying conditions guaranteed by Lemma 1
with respect to the family {Bi}i∈I , where Bi := π(Ai). Note that Lemma 2 implies that Bi’s
generate distributive lattice of ideals because Ai’s generate distributive lattice of ideals. For all
Γ ∈ 2I such that BΓ is non-empty we define α(b) for all b ∈ BΓ, to be an arbitrary element of
π−1(b)∩AΓ. Note that π−1(b)∩AΓ is non-empty (so that this choice is possible) as b ∈ BΓ 6= ∅,
and, BΓ = π(AΓ) by Lemma 2. The map α : B → A thus obtained is clearly a linear splitting
of π. For any i ∈ I consider any b ∈ Bi. Then, by Lemma 1, b ∈ Span(

⋃
Γ∈2I | i∈Γ BΓ), and hence

α(b) ∈
∑

Γ∈2I | i∈Γ

∑
b′∈BΓ

(
π−1(b′) ∩AΓ

)
⊆

∑
Γ∈2I | i∈Γ

AΓ ⊆ Ai. �

Finally, we argue that we can generate a colinear splitting (with appropriate properties) from
the linear one on the coaction invariant subalgebra:

Lemma 4. Let A be a principal H-comodule algebra, let π : A→ B be an H-comodule algebra
surjection, and let {Ai}i∈I be a finite family of ideals in A which are subcomodules, such that
{Ai}i∈I ∪ {kerπ} generates a distributive lattice. Define for all i ∈ I

AcoH
i := Ai ∩AcoH , Bi := π(Ai), BcoH

i := BcoH ∩Bi.

Suppose that there exists a linear map αcoH : BcoH → AcoH such that

π ◦ αcoH = idBcoH , αcoH
(
BcoH
i

)
⊆ AcoH

i , for all i ∈ I.

Let ` : H → A⊗A be a strong connection on A. Then the following formula

α : B −→ A, b 7−→ αcoH
(
b(0)π

(
`(b(1))

〈1〉))`(b(1))
〈2〉

defines a right H-colinear map satisfying

π ◦ α = idB, α(Bi) ⊆ Ai, for all i ∈ I.

Proof. The fact that α defined above is a colinear splitting of π follows immediately from
the proof of [12, Lemma 3.1]. It remains to show that α(Bi) ⊆ Ai for all i ∈ I. Indeed, let
b ∈ Bi. Because of the left colinearity of ` (equation (1d)) it follows easily that b(0)π(`(b(1))

〈1〉)⊗
`(b(1))

〈2〉 ∈ BcoH ⊗A (cf. proof of [12, Lemma 3.1]), and because Bi is an ideal and also a right

H-subcomodule, it follows also that b(0)π(`(b(1))
〈1〉)⊗`(b(1))

〈2〉 ∈ Bi⊗A, hence b(0)π(`(b(1))
〈1〉)⊗

`(b(1))
〈2〉 ∈ BcoH

i ⊗A. Therefore

α(b) = αcoH
(
b(0)π

(
`(b(1))

〈1〉))`(b(1))
〈2〉 ∈ αcoH

(
BcoH
i

)
A ⊆ AcoH

i A ⊆ Ai. �
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Let us now put together all the steps needed to construct a strong connection on a piecewise
principal comodule algebra using the results presented in this paper. Let H be a co-commutative
Hopf algebra. Suppose that P is an H-comodule algebra which is piecewise principal with respect
to a finite family {πi : P → Pi}i∈J of surjective H-comodule algebra morphisms. Then by [12,
Corollary 3.7] the family {πi : P → Pi}i∈J is a covering. Hence, by [6, Proposition 3], it follows
that P is isomorphic with the multipullback P π, where the gluing morphisms are defined, for
all i, j ∈ J , i 6= j, by

πij : Pi −→ Pij := P/(kerπi + kerπj), πi(p) 7−→ p+ kerπi + kerπj . (17)

Obviously πij ’s are surjective. Note that kerπij = πi(kerπj) for all i, j ∈ J , i 6= j. Hence, as
kerπi’s generate a distributive lattice of ideals (see above), it follows by Lemma 2 that, for all
i ∈ J , also kerπij ’s generate a distributive lattice of ideals. It is also immediate (see, e.g., [6,
Remark 2]) that the family (17) satisfies the cocycle condition (Definition 3). Before we can
use Theorem 2 to construct splittings of πi’s needed by Theorem 1 we still need to construct
splittings αij , β

i
j : Pij → Pi, i, j ∈ J , j 6= i of πij ’s with appropriate properties. The H-colinear

splittings βij : Pij → Pi can be constructed using [12, Lemma 3.1] as all the Pi’s are principal

by assumption. Similarly, using Lemma 4 we can construct H-colinear splittings αij : Pij → Pi
of πij ’s satisfying αij(π

i
j(kerπik) ⊆ kerπik for all distinct i, j, k ∈ J from a family of linear maps(

αcoH
)i
j

: P coH
i → P coH

ij , i, j ∈ J , i 6= j satisfying

(
πcoH

)i
j
◦
(
αcoH

)i
j

= idP coH
ij

,
(
αcoH

)i
j

((
πcoH

)i
j

(
ker
(
πcoH

)i
k

))
⊆ ker

(
πcoH

)i
k
, (18)

where we denoted by
(
πcoH

)i
j

: P coH
i → P coH

ij , i, j ∈ J , i 6= j the appropriate restrictions of πij ’s

to the coaction invariant subalgebras. Note that by [12, Lemma 3.1] all the (πcoH)ij ’s are surjec-

tive. Then Lemma 3 gives a semi-explicit construction of (αcoH)ij ’s satisfying properties (18).

Using αij ’s and βij ’s we can now construct H-colinear and unital splittings of πi’s using Theo-
rem 2 and utilize them in the explicit construction of a strong connection given by Theorem 1.

6 Example

In [17] a new non-commutative real projective space RP 2
T and a non-commutative sphere S2

RT
were introduced, by defining C(RP 2

T ) and C(S2
RT ) as a particular triple pullbacks of, respectively,

three copies of the Toeplitz algebra T and the tensor product T ⊗C(Z2). The algebra C(S2
RT )

has a natural (component-wise) diagonal coaction of the Hopf algebra C(Z2), and it was proven
in [17] that the subspace of invariants of this coaction is isomorphic with C(RP 2

T ). Moreover,
it was demonstrated that C(S2

RT ) is a piecewise principal (hence principal) C(Z2)-comodule
algebra. However, the paper [17] does not present an explicit formula for a strong connection.
Because C(Z2) is co-commutative and C(S2

RT ) is defined as a triple pullback algebra, our main
result is applicable. In this section we will present the comparison of computations of a strong
connection on C(S2

RT ) using two methods: the first one uses the strong connection formula
from [12] and the other one uses Theorem 1. The reader will see that, while application of
the formula from [12] is trivial in case of double pullbacks, already for triple pullbacks the
computations becomes fairly unmanageable. Also note that, in many cases, the values of strong
connection formula on generators of the Hopf algebra are easily guessable, and then the values
on arbitrary Hopf algebra elements can be computed using well known recursive formula. Here
the Hopf algebra C(Z2) has linear basis consisting of 1 and u, where u is the single generator
such that u2 = 1, so that it suffices to find the value of a strong connection on u without any
need for recursion. However, guessing the value of a strong connection on u is nigh impossible.
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We will start with recalling the definition of the comodule algebra C(S2
RT ). Our presentation

will be very brief (mostly lifted from [17]), though sufficient to understand what follows, and will
hardly include any geometric intuitions behind C(S2

RT ). Also, because the definition of C(RP 2
T )

is irrelevant for the strong connection computation, we omit it entirely. Therefore, the reader is
recommended to read the full account from [17].

6.1 A pullback quantum sphere

We consider the Toeplitz algebra T as the universal C∗-algebra generated by an isometry s, and
the symbol map given by the assignment σ : T 3 s 7→ ũ ∈ C(S1), where ũ is the unitary function
generating C(S1). The following two maps

Z2 × I 3 (k, t)
δ17−→ eiπ

(
1
4
kt+ 1

2
k+ 3

2

)
∈ S1, I × Z2 3 (t, k)

δ27−→ eiπ
(
− 1

4
kt− 1

2
k+1
)
∈ S1,

and their pullbacks

δ∗1 : C
(
S1
)
−→ C(Z2)⊗ C(I), δ∗2 : C

(
S1
)
−→ C(I)⊗ C(Z2).

feature prominently in the definition of C(S2
RT ). We will denote for brevity σi := δ∗i ◦σ, i = 1, 2.

The definitions of the δi’s seem completely arbitrary. In fact, as shown on the picture [17] below,
each of these maps is meant as the parametrisation of two appropriate quarters of S1

k = −1 k = 1

δ1(1, 1) = ei
9π
4

δ1(1,−1) = ei
7π
4

δ1(−1, 1) = ei
3π
4

δ1(−1,−1) = ei
5π
4

k = 1

k = −1

δ2(1, 1) = ei
π
4

δ2(1,−1) = ei
7π
4

δ2(−1, 1) = ei
3π
4

δ2(−1,−1) = ei
5π
4

We view S1 and I as Z2-spaces via multiplication by ±1. Then Z2 × I and I × Z2 are Z2-
spaces with the diagonal action. Accordingly, C(I), C(S1), C(Z2)⊗C(I) and C(I)⊗C(Z2) are
right C(Z2)-comodule algebras with coactions given by the pullbacks of respective Z2-actions.
Denote by u the generator C(Z2) given by u(±1) := ±1. Then the assignment s 7→ s⊗u makes T
a C(Z2)-comodule algebra. (This coaction corresponds to the Z2-action given by αT−1(s) = −s.)
It is easy to verify that the maps δi, i = 1, 2, are Z2-equivariant, so that their pullbacks δ∗i ’s are
right C(Z2)-comodule maps. Also, since the symbol map σ is a right C(Z2)-comodule map, so
are σi’s.

The construction of C(S2
RT ) can be seen as the quantum version of constructing the topolog-

ical 2-sphere by assembling three pairs of squares to the boundary of a cube. In the quantum
version the algebra T ⊗ C(Z2) replaces the pair of squares. Explicitly, the algebra C(S2

RT ) is
defined in [17] to be the following triple pullback of three copies of T ⊗ C(Z2)

T0 ⊗ C(Z2)

σ1⊗id
��

T1 ⊗ C(Z2)

σ1⊗id
��

C(Z2)⊗ C(I)⊗ C(Z2) C(Z2)⊗ C(I)⊗ C(Z2),
Φ01

oo

T0 ⊗ C(Z2)

σ2⊗id
��

T2 ⊗ C(Z2)

σ1⊗id
��

C(I)⊗ C(Z2)⊗ C(Z2) C(Z2)⊗ C(I)⊗ C(Z2),
Φ02

oo
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T1 ⊗ C(Z2)

σ2⊗id
��

T2 ⊗ C(Z2)

σ2⊗id
��

C(I)⊗ C(Z2)⊗ C(Z2) C(I)⊗ C(Z2)⊗ C(Z2),
Φ12

oo

where the isomorphisms Φij are defined by the following formulas, for all h, k ∈ C(Z2) and
p ∈ C(I)

Φ01(h⊗ p⊗ k) := k ⊗ p⊗ h, Φ02(h⊗ p⊗ k) := p⊗ k ⊗ h,
Φ12(p⊗ h⊗ k) := p⊗ k ⊗ h.

We view the algebras T ⊗ C(Z2), C(I) ⊗ C(Z2) ⊗ C(Z2) and C(Z2) ⊗ C(I) ⊗ C(Z2) as right
C(Z2)-comodules with the diagonal C(Z2)-coaction. The coaction of C(Z2) is defined on C(S2

RT )
componentwise.

6.2 Construction of certain auxilliary elements

Both constructions of strong connections will require the existence of elements φ1 ∈ σ−1
1 (u ⊗

1C(I)) ⊆ T , φ2 ∈ σ−1
2 (1C(I) ⊗ u) ⊆ T with certain additional properties. These elements will

play the crucial role in the construction of appropriate splittings required by both methods.
More explicitly, we have the following:

Lemma 5. There exist elements φ1, φ2 ∈ T satisfying

ρ(φ1) = φ1 ⊗ u, ρ(φ2) = φ2 ⊗ u, (19a)

σ1(φ1) = u⊗ 1C(I), σ2(φ1) = ıI ⊗ 1C(Z2), (19b)

σ2(φ2) = 1C(I) ⊗ u, σ1(φ2) = 1C(Z2) ⊗ ıI , (19c)(
1− φ2

2

)(
1− φ2

1

)
6= 0, (19d)

where ıI ∈ C(I) is an an identity map ıI(t) = t and ρ : T → T ⊗ C(Z2) is a right coaction.

Proof. First we define auxiliary maps φ̂1, φ̂2 ∈ C(S1) by the formulae

φ̂1

(
eiθ
)

:=


2− 4

πθ if θ ∈ [π4 ,
3π
4 ],

−1 if θ ∈ [3π
4 ,

5π
4 ],

4
πθ − 6 if θ ∈ [5π

4 ,
7π
4 ],

1 if θ ∈ [7π
4 ,

9π
4 ],

φ̂2

(
eiθ
)

:=


1 if θ ∈ [π4 ,

3π
4 ],

4− 4
πθ if θ ∈ [3π

4 ,
5π
4 ],

−1 if θ ∈ [5π
4 ,

7π
4 ],

4
πθ − 8 if θ ∈ [7π

4 ,
9π
4 ].

(20)

One immediately verifies that

φ̂1, φ̂2 : S1 −→ [−1, 1], φ̂1(−z) = −φ̂1(z), φ̂2(−z) = −φ̂2(z). (21)

(i.e., ρ(φ̂1) = φ̂1 ⊗ u and ρ(φ̂2) = φ̂2 ⊗ u) and that

φ̂1 ◦ δ1 = u⊗ 1C(I), φ̂2 ◦ δ2 = 1C(I) ⊗ u,

φ̂1 ◦ δ2 = ıI ⊗ 1C(Z2), φ̂2 ◦ δ1 = 1C(Z2) ⊗ ıI . (22)

Using equation (21) and the standard properties of comodules, one proves that because the
symbol map σ is a surjective right C(Z2) comodule map and u is grouplike, we can choose
elements φi ∈ T , i = 1, 2, such that σ(φi) = φ̂i, and ρ(φi) = φi ⊗ u, thus verifying the
properties (19a). That thus chosen elements φ1, φ2 satisfy the properties (19b) and (19c) follows
immediately from equations (22).
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The last condition of the lemma is an easy consequence of the properties of the representation
of a Toeplitz algebra on a Bergman space (see, e.g., [23, Theorem 2.8.2]). However, we provide
an alternative elementary proof to make the presentation self-contained. Unfortunately, σ((1−
φ2

2)(1 − φ2
1)) = (1 − φ̂2

2)(1 − φ̂2
1) = 0, so we cannot prove that vector (1 − φ2

2)(1 − φ2
1) ∈ T is

nonzero by considering the properties of its image in C(S1) under σ and we must work directly
in T . We will use the flexibility afforded by the fact that conditions (19a), (19b) and (19c) do
not fix completely elements φi ∈ T . We will show that even if (1 − φ2

2)(1 − φ2
1) = 0 for our

initial choice of φi’s, there exists a family {φ2;t,n}t∈R,n∈N of deformations of φ2 such that the
conditions (19a), (19b) and (19c) are still satisfied for all pairs (φ1, φ2;t,n) and there exist n ∈ N
and t ∈ R such that (1− φ2

2;t,n)(1− φ2
1) 6= 0.

Let z be a partial isometry generating T , and let ρ : T → T ⊗C(Z2) be a right C(Z2)-coaction.
Define, for all n ∈ N, t ∈ R

φ2;t,n := φ2 + tEn, where En = z
(
zn(z∗)n − zn+2(z∗)n+2

)
. (23)

Because ρ(z) = z⊗ u, we have ρ(φ2;t,n) = φ2;t,n⊗ u and because σ(En) = 0, we have σ(φ2;t,n) =

φ̂2, hence all of the conditions (19) are satisfied, and for all t and n we can use φ2;t,n instead of φ2

in the formula (33) defining a strong connection on C(S2
RT ). Assume that (1−φ2

2;t,n)(1−φ2
1) = 0

for all t ∈ R and n ∈ N. We will show that this assumption leads to contradiction. Using
equation (23) elements (1− φ2

2;t,n)(1− φ2
1) can be explicitly written as(

1− φ2
2

)(
1− φ2

1

)
− (Enφ2 + φ2En)t− (En)2

(
1− φ2

1

)
t2.

If (1−φ2
2;t,n)(1−φ2

1) = 0 for all t ∈ R and n ∈ N then the above polynomials in t are identically

zero for all n ∈ N, which implies in particular that coefficients at t2 must be zero, i.e., that

E2
n

(
1− φ2

1

)
= 0, for all n ∈ N. (24)

Consider now the faithful representation R : T → H of the Toeplitz algebra T on a Hilbert
space H spanned by an orthonormal basis |n〉, n ∈ N, where the partial isometry z is represented
as a right shift, i.e., R(z)|n〉 = |n+ 1〉 for all n ∈ N. One easily proves that

R(E2
n)|m〉 = δm,n|n+ 2〉, for all m,n ∈ N. (25)

Equation (24) implies that R(E2
n)R(1− φ2

1)Ψ = 0, for all n ∈ N and Ψ ∈ H. But then it follows
from equation (25) that R(1−φ2

1)Ψ = 0 for all Ψ ∈ H, i.e., that R(1−φ2
1) = 0. But R is faithful,

hence (1−φ2
1) = 0. On the other hand, σ(1−φ2

1) = 1− φ̂2
1 6= 0. Hence we reached contradiction.

It follows that we can choose φ1 and φ2 so that all conditions (19) are satisfied. �

6.3 A strong connection. Method I

In this subsection we construct a strong connection on the C(Z2)-comodule algebra C(S2
RT ) by

repeated application of the formula stated in the proof of [12, Lemma 3.2]. Let P be a fibre

product of P1
π1

2−→ P12
π1

2←− P2 in the category of right H-comodule algebras. Assume that the
maps πij are surjective and that `i : H → Pi ⊗ Pi, i = 1, 2, are strong connections. Then the
formula [12, Lemma 3.2]

`(h) =
(
`1(h)〈1〉, f1

2 (`1(h)〈1〉)
)
⊗
(
`1(h)〈2〉, f1

2

(
`1(h)〈2〉

))
+
(
0,
(
ε(h(1))− f1

2 (`1(h(1))
〈1〉)f1

2 (`1(h(1))
〈2〉)
)
`2(h(2))

〈1〉)
⊗
(
f2

1

(
`2(h(2))

〈2〉), `2(h(2))
〈2〉) (26)
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defines a strong connection ` : H → P ⊗ P . Here f ij := µij ◦ πij and µij is any unital colinear

splitting of πji , i 6= j. Note also that we use the convention that, if x〈1〉⊗x〈2〉 :=
∑
i
xi⊗ yi, then

(x〈1〉, x〈1〉) ⊗ (x〈2〉, x〈2〉) :=
∑
i

(xi, xi) ⊗ (yi, yi), and similarly for coproducts. Observe that for

C(Z2)-comodule algebras it is enough to compute the value of a strong connection for h = u,
where u is the group-like generator of C(Z2) because strong connections are unital and linear,
i.e., it is sufficient to use the following equation

`(u) =
(
`1(u)〈1〉, f1

2

(
`1(u)〈1〉

))
⊗
(
`1(u)〈2〉, f1

2

(
`1(u)〈2〉

))
+
(
0,
(
1− f1

2

(
`1(u)〈1〉

)
f1

2

(
`1(u)〈2〉

))
`2(u)〈1〉

)
⊗
(
f2

1

(
`2(u)〈2〉

)
, `2(u)〈2〉

)
. (27)

Note that it is sufficient to know the values f ij(x) only for a set of elements x ∈ Pj which actually
appear in the above formula and which (because of bi-colinearity of strong connections) can be
assumed to be linearly independent and satisfy ρ(x) = x ⊗ u, i.e., one needs only to solve the
following equations with unknowns f ij(x) ∈ Pj (where ρ denotes the coaction)

ρ
(
f ij(x)

)
= f ij(x)⊗ u, πji

(
f ij(x)

)
= πij(x). (28)

As the formula (26) assumes the comodule algebra to be presented as the ordinary (double)
pullback, we need to convert the triple-pullback defining C(S2

RT ) to an iterated pullback and
apply the formula recursively. Since all the maps C(RP 2

T )→ Ti ⊗ C(Z2) are surjective [17], we
can apply [21, Lemma 0.2 and Proposition 1.3] to present C(S2

RT ) as a desired iterated pullback

C(S2
RT )

tt
**

P1

%%

β2

,,yy

(T ⊗ C(Z2))2

β1

yy
(T ⊗ C(Z2))0

,,α1 %%

(T ⊗ C(Z2))1

α2yy ,,

limP12

yy %%
C(Z2)⊗ T ⊗ C(Z2) T ⊗ C(Z2)⊗ C(Z2)

%%

T ⊗ C(Z2)⊗ C(Z2).

yy
C(Z2)⊗ C(Z2)⊗ C(Z2)

(29)

Here

α1 = σ1 ⊗ id, β1(x) = ((Φ02 ◦ (σ1 ⊗ id))(x), (Φ12 ◦ (σ2 ⊗ id))(x)),

α2 = Φ01 ◦ (σ1 ⊗ id), β2(x, y) = ((σ2 ⊗ id)(x), (σ2 ⊗ id)(y)).

We will first compute a strong connection `01 : C(Z2) → P1 ⊗ P1 on P1 – the fiber product
of T0⊗C(Z2) and T1⊗C(Z2) (see (29)). We use the particular choice of the strong connections
`0 and `1 on trivial pieces T0 ⊗ C(Z2) and T1 ⊗ C(Z2) given by

`0(u) = (1⊗ u)⊗ (1⊗ u), `1(u) = (1⊗ u)⊗ (1⊗ u).

Substituting the above formulae in (27) yields a glued strong connection on P1

`01(u) =
(
1⊗ u, f0

1 (1⊗ u)
)
⊗
(
1⊗ u, f0

1 (1⊗ u)
)
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+
(
0,
(
1⊗ 1− f0

1 (1⊗ u)f0
1 (1⊗ u)

)
(1⊗ u)

)
⊗
(
f1

0 (1⊗ u), 1⊗ u
)
. (30)

Let us write for brevity a := f0
1 (1 ⊗ u), b := f1

0 (1 ⊗ u). By diagram (29) and equation (28)
elements a, b ∈ T ⊗ C(Z2) are any solutions to the following equations

ρ(a) = a⊗ u, (σ1 ⊗ id)(1⊗ u) = (Φ01 ◦ (σ1 ⊗ id))(a),

ρ(b) = b⊗ u, (σ1 ⊗ id)(b) = (Φ01 ◦ (σ1 ⊗ id))(1⊗ u).

Substituting the definition of Φ01 simplifies the above system of equations to

ρ(a) = a⊗ u, ρ(b) = b⊗ u, (σ1 ⊗ id)(a) = u⊗ 1⊗ 1, (σ1 ⊗ id)(b) = u⊗ 1⊗ 1,

and it is easy to see that one of the solutions is

a = φ1 ⊗ 1, b = φ1 ⊗ 1.

Here and in what follows φ1 and φ2 are elements of T satisfying all the conditions (19). Substi-
tuting the above solution into (30) yields the following strong connection on P1

`01(u) = (1⊗ u, φ1 ⊗ 1)⊗ (1⊗ u, φ1 ⊗ 1) + (0, (1− φ2
1)⊗ u)⊗ (φ1 ⊗ 1, 1⊗ u) (31)

Now, we apply the formula (26) to the second iterated pullback in the diagram (29)

T2 ⊗ C(Z2)

β1 !!

P1

β2��
Q

β1(x) = ((Φ02 ◦ (σ1 ⊗ id))(x), (Φ12 ◦ (σ2 ⊗ id))(x)),
β2(x, y) = ((σ2 ⊗ id)(x), (σ2 ⊗ id)(y)).

where Q ⊆ (C(I)⊗C(Z2)⊗C(Z2))⊕ (C(I)⊗C(Z2)⊗C(Z2)). We choose the strong connection
on P1 given by equation (31), and on T2 ⊗ C(Z2) given by

`2(u) = (1⊗ u)⊗ (1⊗ u).

Substituting these into formula (27) yields a strong connection on C(S2
RT )

`(u) =
(
`2(u)〈1〉, f2

01

(
`2(u)〈1〉

))
⊗
(
`2(u)〈2〉, f2

01

(
`2(u)〈2〉

))
+
(
0,
(
(1⊗ 1, 1⊗ 1)− f2

01(`2(u)〈1〉)f2
01(`2(u)〈2〉)

)
`01(u)〈1〉

)
⊗
(
f01

2

(
`01(u)〈2〉

)
, `01(u)〈2〉

)
=
(
1⊗ u, f2

01(1⊗ u)
)
⊗
(
1⊗ u, f2

01(1⊗ u)
)

+
(
0,
(
(1⊗ 1, 1⊗ 1)−

(
f2

01(1⊗ u)
)2)

(1⊗ u, φ1 ⊗ 1)
)

⊗
(
f01

2 ((1⊗ u, φ1 ⊗ 1)), (1⊗ u, φ1 ⊗ 1)
)

+
(
0,
(
(1⊗ 1, 1⊗ 1)−

(
f2

01(1⊗ u)
)2)(

0,
(
1− φ2

1

)
⊗ u
))

⊗
(
f01

2 ((φ1 ⊗ 1, 1⊗ u)), (φ1 ⊗ 1, 1⊗ u)
)
, (32)

where f2
01 : T ⊗ C(Z2) → P1, f01

2 : P1 → T ⊗ C(Z2) are any linear, unital, right C(Z2)-
comodule maps satisfying β2 ◦ f2

01 = β1, β1 ◦ f01
2 = β2. Denote for brevity (a0, a1) := f2

01(1⊗ u),
b := f01

2 ((1⊗ u, φ1 ⊗ 1)), c := f01
2 ((φ1 ⊗ 1, 1⊗ u)). It follows that we need to solve the following

system of equations for a0, a1, b, c

ρ(a0) = a0 ⊗ u,
(
Φ02 ◦ (σ1 ⊗ id)

)
(1⊗ u) = (σ2 ⊗ id)(a0),

ρ(a1) = a1 ⊗ u,
(
Φ12 ◦ (σ2 ⊗ id)

)
(1⊗ u) = (σ2 ⊗ id)(a1),
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ρ(b) = b⊗ u,
(
Φ02 ◦ (σ1 ⊗ id)

)
(b) = σ2(1)⊗ u,(

Φ12 ◦ (σ2 ⊗ id)
)
(b) = σ2(φ1)⊗ 1C(Z2),

ρ(c) = c⊗ u,
(
Φ02 ◦ (σ1 ⊗ id)

)
(c) = σ2(φ1)⊗ 1C(Z2),(

Φ12 ◦ (σ2 ⊗ id)
)
(c) = σ2(1)⊗ u.

Simplification of the right column of the above equations using equation (19) yields

(σ2 ⊗ id)(a0) = 1C(I) ⊗ u⊗ 1C(Z2), (σ2 ⊗ id)(a1) = 1C(I) ⊗ u⊗ 1C(Z2),

(σ1 ⊗ id)(b) = u⊗ 1C(I) ⊗ 1C(Z2), (σ2 ⊗ id)(b) = ıI ⊗ 1C(Z2) ⊗ 1C(Z2),

(σ1 ⊗ id)(c) = 1C(Z2) ⊗ ıI ⊗ 1C(Z2), (σ2 ⊗ id)(c) = 1C(I) ⊗ u⊗ 1C(Z2).

Using equation (22) again, one easily verifies that one of the solutions can be given as

(a0, a1) =
(
φ2 ⊗ 1C(Z2), φ2 ⊗ 1C(Z2)

)
, b = φ1 ⊗ 1C(Z2), c = φ2 ⊗ 1C(Z2).

Substituting this particular solution to the formula (32) for `(u) yields

`(u) = (1⊗ u, (φ2 ⊗ 1, φ2 ⊗ 1))⊗ (1⊗ u, (φ2 ⊗ 1, φ2 ⊗ 1))

+
(
0,
(
(1⊗ 1, 1⊗ 1)− ((φ2 ⊗ 1, φ2 ⊗ 1))2

)
(1⊗ u, φ1 ⊗ 1)

)
⊗ (φ1 ⊗ 1, (1⊗ u, φ1 ⊗ 1))

+
(
0,
(
(1⊗ 1, 1⊗ 1)− ((φ2 ⊗ 1, φ2 ⊗ 1))2

)(
0,
(
1− φ2

1

)
⊗ u
))

⊗ (φ2 ⊗ 1, (φ1 ⊗ 1, 1⊗ u)).

Simplifying, removing unnecessary parentheses and rearranging terms so that C(S2
RT ) ⊆ (T0 ⊗

C(Z2))⊕ (T1 ⊗ C(Z2))⊕ (T2 ⊗ C(Z2)) yields finally

`(u) = (φ2 ⊗ 1, φ2 ⊗ 1, 1⊗ u)⊗ (φ2 ⊗ 1, φ2 ⊗ 1, 1⊗ u)

+
((

1− φ2
2

)
⊗ u,

(
1− φ2

2

)
φ1 ⊗ 1, 0

)
⊗ (1⊗ u, φ1 ⊗ 1, φ1 ⊗ 1)

+
(
0,
(
1− φ2

2

)(
1− φ2

1

)
⊗ u, 0

)
⊗ (φ1 ⊗ 1, 1⊗ u, φ2 ⊗ 1). (33)

Write `(u) =
3∑
i=1

li ⊗ ri where

l1 = (φ2 ⊗ 1, φ2 ⊗ 1, 1⊗ u), r1 = (φ2 ⊗ 1, φ2 ⊗ 1, 1⊗ u),

l2 =
((

1− φ2
2

)
⊗ u,

(
1− φ2

2

)
φ1 ⊗ 1, 0

)
, r2 = (1⊗ u, φ1 ⊗ 1, φ1 ⊗ 1),

l3 =
(
0,
(
1− φ2

2

)(
1− φ2

1

)
⊗ u, 0

)
, r3 = (φ1 ⊗ 1, 1⊗ u, φ2 ⊗ 1).

According to [5, Theorem 3.1] if both {l1, l2, l3} and {r1, r2, r3} are (separately) sets of linearly
independent vectors then

pij := rilj , p := (pij) ∈M3

(
C
(
RP 2
T
))
, p2 = p,

is a projector for an associated line bundle. Hence, in order to use this result, we need to prove
that zeros are the only solutions to equations

3∑
i=1

αiri = 0,
3∑
i=1

βili = 0. (34)

The first of the above equalities implies that α1φ2⊗1+α21⊗u+α3φ1⊗1 = 0, hence immediately
α2 = 0. Because {φ̂1, φ̂2} = σ({φ1, φ2}) (equation (19)) are linearly independent in C(S1), which
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can be checked easily by direct computation using equation (20), also {φ1, φ2} must be linearly
independent in T , hence α1 = α3 = 0. The second equality in equation (34) can be expanded as

β1φ2 ⊗ 1 + β2

(
1− φ2

2

)
⊗ u = 0, (35)

β1φ2 ⊗ 1 + β2

(
1− φ2

2

)
φ1 ⊗ 1 + β3

(
1− φ2

2

)(
1− φ2

1

)
⊗ u = 0, (36)

β11⊗ u = 0. (37)

It follows immediately from equation (37) that β1 = 0. Then because σ(1 − φ2
2) = 1 − φ̂2

2 6= 0
(see equations (19) and (20)) we have also 1−φ2

2 6= 0, and so, by equation (35), β2 = 0. Finally,
equation (36) and equation (19d) implies that β3 = 0.

6.4 A strong connection. Method II

In this subsection we construct a strong connection on the C(Z2)-comodule algebra C(S2
RT )

using the formula given in Theorem 1. As in the previous subsection φ1, φ2 ∈ T denote some
chosen elements satisfying all the conditions in (19). Also as before, the strong connections
on the three copies of C(Z2)-comodule algebra (with diagonal coaction) T ⊗ C(Z2) which are
components of C(S2

RT ) are chosen as given by the formulas

`1(u) = `2(u) = `3(u) = 1T ⊗ u, `1(1C(Z2)) = `2(1C(Z2)) = `3(1C(Z2)) = 1T ⊗ 1C(Z2).

In order to use the formula from Theorem 1 we need the appropriate colinear and unital splittings
from the linear subspaces generated by the legs of `i’s into C(S2

RT ). The reader will easily
verify that the maps αi : Span{1T ⊗ u, 1T ⊗ 1C(Z2)} → C(S2

RT ), i = 0, 1, 2 defined by setting
αi(1T ⊗ 1C(Z2)) := 1C(S2

RT ), for i = 0, 1, 2, and by setting

α0(1T ⊗ u) :=
(
1T ⊗ u, φ1 ⊗ 1C(Z2), φ1 ⊗ 1C(Z2)

)
,

α1(1T ⊗ u) :=
(
φ1 ⊗ 1C(Z2), 1T ⊗ u, φ2 ⊗ 1C(Z2)

)
,

α2(1T ⊗ u) :=
(
φ2 ⊗ 1C(Z2), φ2 ⊗ 1C(Z2), 1T ⊗ u

)
.

Incidentally, the above formulas were not guessed but derived using the degenerated version of
the construction from Theorem 2 in which the relevant parts of αij ’s were obtained utilizing φ1

and φ2. By luck, the corrections in which the splittings βij could have been used turned out to

be unnecessary – hence it was also unnecessary to derive βij ’s using the methods from Section 5.
Let us denote for brevity γi := αi(1T ⊗ u), as well as omit subscripts indicating the algebra

the unit elements belong to. Let us note that because u2 = 1 we have

1− α2
1 =

((
1− φ2

1

)
⊗ 1, 0,

(
1− φ2

2

)
⊗ 1
)
, 1− α2

1 =
((

1− φ2
2

)
⊗ 1,

(
1− φ2

2

)
⊗ 1, 0

)
.

Then the straightforward application of the formula from Theorem 1 yields

`(u) := α0 ⊗ α0

(
1− α2

1

)(
1− α2

2

)
+ α1 ⊗ α1

(
1− α2

2

)
+ α2 ⊗ α2

= (1⊗ u, φ1 ⊗ 1, φ1 ⊗ 1)⊗
((

1− φ2
1

)(
1− φ2

2

)
⊗ u, 0, 0

)
+ (φ1 ⊗ 1, 1⊗ u, φ2 ⊗ 1)⊗

(
φ1

(
1− φ2

2

)
⊗ 1,

(
1− φ2

2

)
⊗ u, 0

)
+
(
φ2 ⊗ 1C(Z2), φ2 ⊗ 1C(Z2), 1T ⊗ u

)
⊗
(
φ2 ⊗ 1C(Z2), φ2 ⊗ 1C(Z2), 1T ⊗ u

)
.

Note the similarity of this formula to the formula (33) obtained using the other method in the
previous subsection. This similarity is understandable, because (not excluding the possibility of
some general link, as yet unexplored by the author, between the two methods used) the common
feature of both particular computations is that by construction, both strong connection formulas
were expressed using the limited set of elements: φ1, φ2, 1T ∈ T , and 1C(Z2), u ∈ C(Z2).

We leave to the reader analogous computations as those at the end of the previous subsection,
which prove that both left and right legs of the above strong connection are linearly independent
(when taken separately).
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[19] Hajac P.M., Zieliński B., Cocycle condition for multi-pullbacks of algebras, in Operator Algebras and Quan-
tum Groups, Banach Center Publ., Vol. 98, Polish Acad. Sci., Warsaw, 2012, 239–243, arXiv:1207.0087.

[20] Pedersen G.K., Pullback and pushout constructions in C∗-algebra theory, J. Funct. Anal. 167 (1999), 243–
344.

[21] Rudnik J., The K-theory of the triple-Toeplitz deformation of the complex projective plane, in Operator
Algebras and Quantum Groups, Banach Center Publ., Vol. 98, Polish Acad. Sci., Warsaw, 2012, 303–310,
arXiv:1207.2066.

[22] Rudnik J., The noncommutative topology of triple-pullback C∗-algebra, Ph.D. Thesis, Institute of Mathe-
matics, Polish Academy of Science, Warsaw, 2013.

[23] Vasilevski N.L., Commutative algebras of Toeplitz operators on the Bergman space, Operator Theory:
Advances and Applications, Vol. 185, Birkhäuser Verlag, Basel, 2008.
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