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Abstract. Werner’s conformally invariant family of measures on self-avoiding loops on Rie-
mann surfaces is determined by a single measure µ0 on self-avoiding loops in C \ {0} which
surround 0. Our first major objective is to show that the measure µ0 is infinitesimally
invariant with respect to conformal vector fields (essentially the Virasoro algebra of confor-
mal field theory). This makes essential use of classical variational formulas of Duren and
Schiffer, which we recast in representation theoretic terms for efficient computation. We
secondly show how these formulas can be used to calculate (in principle, and sometimes
explicitly) quantities (such as moments for coefficients of univalent functions) associated to
the conformal welding for a self-avoiding loop. This gives an alternate proof of the unique-
ness of Werner’s measure. We also attempt to use these variational formulas to derive
a differential equation for the (Laplace transform of) the “diagonal distribution” for the
conformal welding associated to a loop; this generalizes in a suggestive way to a deforma-
tion of Werner’s measure conjectured to exist by Kontsevich and Suhov (a basic inspiration
for this paper).
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1 Introduction

Given a topological space S, let Comp(S) denote the set of all compact subsets of S with the
Vietoris topology, and let

Loop(S) :=
{
γ ∈ Comp(S) : γ is homeomorphic to S1

}
with the induced topology (see Appendix A). Suppose that for each Riemann surface S, µS is
a positive Borel measure on Loop(S). Following Werner, this family of measures is said to
satisfy conformal restriction if for each conformal embedding S1 → S2, the restriction of µS2 to
Loop(S1) equals µS1 ; the family is nontrivial if the measure of the set{

γ ∈ Loop({0 < |z| < A}) \ Loop({|z| < a}) : γ surrounds 0
}

(1.1)

is finite and positive, for some 0 < a < A. In [17] Werner proved the following remarkable
result.

Theorem 1.1. There exists a nontrivial family of measures {µS} on self-avoiding loops on Rie-
mann surfaces which satisfies conformal restriction. This family is unique up to multiplication
by an overall positive constant.
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Remark 1.2. In the case of the plane, S = C, this measure is conjectured to be the contin-
uum limit of a (properly weighted) random self-avoiding circular walk (see Section 7.1 of [17]).
Kontsevich and Suhov have conjectured that there is a deformation of Werner’s (family of)
measures to a (family of) measures having values in a determinant line bundle Detc, where
c ≤ 1 is central charge; this deformation is presumably a continuum limit for other statistical
mechanical models, and the determinant twist (when c 6= 0) is essential in understanding how
the theory naturally extends to all Riemann surfaces (see [13] and [4]). We refer the reader to
the introduction of [17] and Section 6 of [13] for further background and motivation, and [3] for
a connection with Schramm–Loewner evolution.

Below we will introduce a normalization which uniquely determines Werner’s family of mea-
sures (see (1.3)). We will assume this is in force from now on.

Essentially because any self-avoiding loop on a Riemann surface is contained in an embedded
annulus, the family {µS} is (in principle) uniquely determined by

µ0 := µ|Loop1(C\{0})

the restriction of µ to loops in the plane which surround 0. The measure µ0 is determined, up
to a constant, by the following formula of Werner (see Proposition 3 of [17]):

Theorem 1.3. Suppose that 0 ∈ U ⊂ V , where U and V are bounded simply connected domains
in C. Then

µ0

(
Loop1(V \ {0}) \ Loop(U)

)
= cW log(|φ′(0)|),

where φ : (U, 0)→ (V, 0) is a conformal isomorphism.

We will refer to cW as Werner’s constant, which depends on the normalization (1.3). At the
present time we can only say that cW ≥ 1 (see Section 7.2).

Our purpose is to explore other possible explicit formulas for µ0, especially in terms of welding.
To put this in perspective, it is convenient to slightly digress and recall the “fundamental theorem
of Welding”, and some associated terminology (we recommend [5] as a basic reference).

Theorem 1.4. Suppose that σ is a quasisymmetric homeomorphism of S1. Then

σ = l ◦ma ◦ u,

where

u = z

(
1 +

∑
n≥1

unz
n

)
is a univalent holomorphic function in the open unit disk ∆, with quasiconformal extension to
C ∪ {∞}, m ∈ S1 is a rotation, 0 < a ≤ 1 is a dilation, the mapping inverse to l,

L(z) = z

(
1 +

∑
m≥1

bmz
−m
)

is a univalent holomorphic function on the open unit disk about infinity, ∆∗, with quasiconformal
extension to C ∪ {∞}, and the compatibility condition

mau
(
S1
)

= L
(
S1
)

holds. This factorization is unique.
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Definition 1.5. A homeomorphism σ of S1 has a triangular factorization (or welding) if σ =
l ◦ma ◦ u, where

u(z) = z

(
1 +

∑
n≥1

unz
n

)
is a holomorphic function in ∆ with a continuous extension to a homeomorphism on D :=
closure(∆), m ∈ S1 is a rotation, 0 < a is a dilation, the mapping inverse to l,

L(z) = z

(
1 +

∑
m≥1

bmz
−m
)
,

is a holomorphic function on ∆∗ with a continuous extension to a homeomorphism on D∗ =
closure(∆∗), and the compatibility condition mau

(
S1
)

= L
(
S1
)

holds.

Quasisymmetric homeomorphisms have unique triangular factorizations. For less regular
homeomorphisms, there are additional sufficient conditions for the existence of weldings (see [2]
and references, and [1]), but there are many examples of homeomorphisms which do not admit
weldings, and weldings which are not unique (see [5]).

Suppose that γ ∈ Loop1(C \ {0}). By the Jordan curve theorem the complement of γ in
C ∪ {∞} has two connected components, U±, so that

C ∪ {∞} = U+ t γ t U−,

where 0 ∈ U+ and ∞ ∈ U−. There are based conformal isomorphisms

φ+ : (∆, 0)→ (U+, 0), φ− : (∆∗,∞)→ (U−,∞).

The map φ− can be uniquely determined by normalizing the Laurent expansion in |z| > 1 to be
of the form

φ−(z) = ρ∞(γ)L(z), L(z) = z

(
1 +

∑
n≥1

bnz
−n
)
,

where ρ∞(γ) > 0 is the transfinite diameter (see Chapters 16 and 17 of [10] for numerous
formulas for ρ∞). The map φ+ can be similarly uniquely determined by normalizing its Taylor
expansion to be of the form

φ+(z) = ρ0(γ)u(z), u(z) = z

(
1 +

∑
n≥1

unz
n

)
,

where ρ0(γ) > 0 is called the conformal radius with respect to 0. By a theorem of Carathéodory
(see Theorem 17.5.3 of [10]), both φ± extend uniquely to homeomorphisms of the closures of their
domain and target. This implies that the restrictions φ± : S1 → γ are topological isomorphisms.
Thus there is a well-defined welding map

W : Loop1(C \ {0})→
{
σ ∈ Homeo+

(
S1
)

: σ = lau
}
× R+ : γ 7→ (σ(γ), ρ∞(γ)), (1.2)

where

σ(γ, z) := φ−1
− (φ+(z)) = lau, a(γ) =

ρ0(γ)

ρ∞(γ)

and l is the inverse mapping for L.
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Remarks 1.6.

(a) To clarify (1.2), the σ image of W is by definition the set of homeomorphisms which admit
a triangular factorization with rotation m = 1.

(b) The map W is not 1 − 1 because triangular factorization fails (in a dramatic way) to be
unique (the source of nonuniqueness: there exist homeomorphisms of the 2-sphere which
are conformal off of a Jordan curve, and which are not linear fractional transformations;
see [5]).

A lofty goal (not in sight) is to calculate, in some explicit way, the image measure W∗µ0,
and to show that µ0 can be recovered from this image. As we will see in Section 2, conformal
invariance implies that

d(W∗µ0)(σ, ρ∞) = dν0(σ)× dρ∞
ρ∞

, (1.3)

where ν0 is an inversion invariant finite measure, which we normalize to have unit mass. This
reduces the task of computing W∗µ0 to computing the inversion invariant probability measure ν0.

In this paper our first major objective is to show that the measure µ0 is infinitesimally
invariant with respect to conformal vector fields, essentially the Virasoro algebra of conformal
field theory. This makes essential use of classical variational formulas of Duren and Schiffer [9],
which we reformulate in representation theoretic terms for efficient computation. We secondly
show how conformal invariance can be used to calculate integrals with respect to the measure ν0

(ν0 is not itself conformally invariant, so this is a nontrivial step). We thirdly show how these
formulas can be used to calculate the joint moments for the coefficients of u. Since these
coefficients are bounded, these moments (in principle) determine the joint distributions for the
coefficients. This yields an alternate proof of the uniqueness of Werner’s measure. This is
also potentially interesting because a sufficiently explicit calculation of the individual moments
for un could yield a probabilistic proof of the Bieberbach conjecture/de Branges theorem (as
pointed out by a referee, one must also show the measure ν0 has dense support in a suitable
sense). Our current procedure (which we have implemented numerically) has the virtue that
it in principle systematically calculates all joint moments; it has the drawback that to obtain
a general moment for uN , it has to calculate on the order of p(N) joint moments for all un with
n < N , where p(N) is the partition function (which grows very rapidly). In any event a certain
fraction of the moments turn out to have remarkably simple expressions; for example:

Theorem 1.7.∫
|un|2dν0 =

1

n+ 1
.

The coefficients of u are well-known to be functionally dependent in a very complicated
way (see Chapter 11 of [8]). For this reason it seems unlikely that one could calculate ν0 in
an explicit way in terms of these coordinates. For this reason it is important to consider other
quantities (and coordinates) associated with the welding homeomorphism σ. For various reasons
(see Remarks 1.9 below), it is of special interest to calculate the “diagonal distribution”, i.e. the
distribution for a in the triangular factorization σ = lau.

Conjecture 1.8. If ν0 is normalized to be a probability measure, then

ν0({σ : exp(−x) ≤ a(σ) ≤ 1}) = exp

(
−β0

x

)
, x > 0

for some constant β0 <
5π2

4 .
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Remarks 1.9.

(a) The motivating idea is to show that the Laplace transform of the diagonal distribution
for ν0 satisfies a differential equation, using the infinitesimal conformal invariance of µ0.

(b) This conjecture is closely related to Proposition 18 in [17], concerning the measure of the
set of nontrivial loops in a finite type annulus, for which there is an explicit conjecture
due to Cardy (see Section 7).

(c) There is a natural generalization of this conjecture to the deformation of Werner’s measure
which is conjectured to exist in [13] (see Section 7.4 and see [4] for recent progress on this
conjecture). Our hope is that this extended conjecture might be useful in proving existence
of this deformation.

To close this introduction, we mention one obvious coordinate which should be investigated.
For a homeomorphism σ of S1, write

σ
(
eiθ
)

= eiΣ(θ),

where the lift Σ is a homeomorphism of R satisfying Σ(θ + 2π) = Σ(θ) + 2π; Σ is determined
modulo 2πZ. The ν0 distribution for σ is completely determined by the distributional derivative,

1

2π
dΣ,

which we view as a probability measure on S1.

Verblunsky discovered a remarkable parameterization of probability measures on S1. To state
the gist of the result simply (following [16]), let Prob′(S1) denote the set of probability measures
which are nontrivial, in the sense that their support is not a finite set.

Theorem 1.10. The following map induces a bijective correspondence:

Prob′
(
S1
)
→

∞∏
n=0

∆ : ω → (αn),

where p0 = 1, p1 = z − α1, . . . are the monic orthogonal polynomials with respect to ω, and
αn = −pn+1(0).

It is very striking that the image of this correspondence is a product space, i.e. the αn are
functionally independent, in sharp contrast to the coefficients un. This suggests the following
naive

Question 1.11. Are the Verblunsky coefficients

(αn) ∈
∞∏
n=0

∆

independent random variables with respect to ν0?

We have basically failed in trying to investigate this question numerically.
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1.1 Outline of the paper

In Section 2 we prove some basic facts about the welding map W . In Section 3 we recall some
classical variational formulas of Duren and Schiffer. In Section 4 we discuss the infinitesimal
action from a representation theoretic point of view, and we recast the Duren–Schiffer formulas
in terms of generating functions, using a stress-energy tensor formulation common in conformal
field theory. In Section 5 we establish the version of infinitesimal conformal invariance of µ0

needed for our purposes. In Section 6 we apply this to compute moments of the coefficients of u,
and to give an alternate proof of the uniqueness of Werner’s family of measures. In Section 7
we discuss the relation between the diagonal distribution conjecture and Proposition 18 of [17],
and outline a strategy for a proof; we also briefly indicate how the conjecture generalizes to the
deformation which is conjectured by Kontsevich and Suhov to exist in [13].

1.2 Notations and conventions

Given a complex number z, we often write z∗ for the complex conjugate, especially when z is
represented by a complicated expression.

Given a Laurent expansion f(z) =
∑
fnz

n, we write f∗(z) =
∑

(fn)∗z−n (for z ∈ S1,
f∗(z) = f(z)∗). We also write f−(z) =

∑
n<0

fnz
n, f+(z) =

∑
n≥0

fnz
n, f++(z) =

∑
n>0

fnz
n, and

f−1 = Res(f(z), z = 0).

Throughout this paper, we view vector fields on a manifold as the Lie algebra of diffeomor-
phisms of the manifold; the induced bracket is the negative of the usual bracket obtained by
viewing vector fields as derivations of functions on the manifold.

2 The welding map

In this section we consider the welding map (1.2).

Proposition 2.1.

(a) The distributions for ρ0 and ρ∞ are invariant with respect to dilation, i.e. equivalent to
Haar measure for R+.

(b) d(W∗µ0)(σ, ρ∞) = dν0(σ)× dρ∞
ρ∞

, where ν0 is a finite measure (which we will normalize to
have unit mass).

(c) The measure dν0(σ) is inversion invariant and invariant with respect to conjugation by
C : z 7→ z∗.

(d) The measure dν0(σ) is supported on σ having triangular factorization σ = lau, i.e. m = 1.

(e) For any γ ∈ Loop1(C \ {0}),

a(σ(γ)) =

1−
∞∑
m=1

(m− 1)|bm|2

1 +
∞∑
n=1

(n+ 1)|un|2


1/2

≤ 1,

where u and L are written as in Definition 1.5.

(f) The welding map is equivariant with respect to rotations in the sense that

σ(Rot(θ)(γ)) = Rot(θ) ◦ σ(γ) ◦ Rot(θ)−1.
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Proof. We first claim that{
γ ∈ Loop1(C \ {0}) : r < ρ∞(γ) < R

}
⊂ Loop1({|z| < 4R}) \ Loop1({r < |z|}).

The inequality r < ρ∞(γ) implies that γ cannot be contained in {|z| < r}. In general ρ∞(γ) =
ρ0( 1

γ )−1. Thus if ρ∞(γ) < R, then 1
R < ρ0( 1

γ ). The Koebe one-quarter theorem implies that
1
γ ⊂ {

1
4R < |z|}. Thus γ is in the ball of radius 4R. This proves the claim.

By conformal invariance and the nontriviality assumption of Werner, the set of loops (sur-
rounding zero) with r < ρ∞ < R has µ0 finite measure, for any r < R. This implies that there
is a essentially unique disintegration of µ0 of the form

dµ0(γ) =

∫ ∞
ρ∞=0

dµρ∞(σ)dω(ρ∞),

where the fiber measures are probability measures.

The invariance of µ0 with respect to dilation, γ → ργ, implies that the ρ∞ distribution ω is
also dilation invariant, i.e. it is a Haar measure for R+. The invariance of µ0 with respect to
z → 1

z implies that the same is true for ρ0. This proves (a).

Since µ0 is determined up to multiplication by a constant, we can suppose that

dω(ρ∞) =
dρ∞
ρ∞

.

The action by dilation transports one fiber to another. Hence dilation invariance also implies
that all the fiber measures are the same. This implies that W∗µ0 is a product measure, as
claimed in part (b).

For part (c), we first use the invariance of µ0 with respect to z → 1
z∗ , which maps γ to 1

γ∗ :

φ+

(
1

γ∗

)
(z) =

1

φ−(γ)
(

1
z∗

)∗ , |z| < 1,

φ−

(
1

γ∗

)
(z) =

1

φ+(γ)
(

1
z∗

)∗ , |z| > 1,

and

φ−

(
1

γ∗

)−1

(w) =
1(

φ+(γ)−1
(

1
w∗

))∗ .
Thus

σ(
1

γ∗
)(z) = φ−

(
1

γ∗

)−1

◦ φ+

(
1

γ∗

)
(z) = φ−

(
1

γ∗

)−1
(

1

φ−(γ)
(

1
z∗

)∗
)

=
1(

φ+(γ)−1(φ−(γ)
(

1
z∗

))∗ =
1

σ−1(γ)
(

1
z∗

)∗ = σ(γ)−1(z).

This implies the invariance of ν0 with respect to inversion.

The measure µ0 is also invariant with respect to C : z 7→ z∗. In this case

φ±(γ∗) = C ◦ φ±(γ) ◦ C.

This implies that ν0 is invariant with respect to conjugation by C. This proves (c).

Part (d) is obvious.
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For part (e) (essentially the well-known area theorem from the theory of univalent functions),
the main point is that

au(∆) = C \ L(D∗).

For sufficiently smooth γ

Area(u(∆)) =
1

2i

∫
γ
dt̄ ∧ dt =

1

2i

∫
S1

ūdu = π

(
1 +

∞∑
n=1

(n+ 1)|un|2
)

and

Area(C \ L(∆∗)) =
1

2i

∫
γ
t̄dt =

1

2i

∫
S1

LdL = π

(
1−

∞∑
m=1

(m− 1)|bm|2
)
.

By continuity of measure, these formulas hold for all γ. This implies part (e).
Part (f) follows from

φ±(Rot(θ)(γ)) = Rot(θ) ◦ φ± ◦ Rot(θ)−1. �

Remarks 2.2.

(a) In connection with part (c), in general, if a homeomorphism σ has a triangular factorization
lmau, then σ−1 has a triangular factorization with

u
(
σ−1

)
(z) =

1

L
(

1
z∗

)∗ , l
(
σ−1

)
(z) =

1

U
(

1
z∗

)∗ ,
m
(
σ−1

)
= m(σ)∗, a

(
σ−1

)
= a(σ).

In particular inversion stabilizes the set of σ having triangular factorization with m = 1.

(b) In connection with part (f), equivariance with respect to rotations, see Section 3.2 below.

2.1 Unresolved foundational issues

Theorem 1.4 implies that W induces a bijection

W : QuasiCircles1(C \ {0})↔
{
σ ∈ QS

(
S1
)

: σ = lau
}
× R+,

where a quasicircle is a Jordan curve which admits a parameterization by the restriction to S1

of a quasiconformal homeomorphism of C ∪ {∞}.

Conjecture 2.3.

(a) µ0 has measure zero on quasicircles.

(b) W is 1− 1 on a set of full µ0 measure.

(c) Almost surely with respect to ν0, σ has a unique triangular factorization (with m = 1).

This kind of issue is addressed in [1] and [2].
In this paper we will need to avoid these unresolved issues. In particular, because we do not

know that u is determined by σ (in an almost sure sense), in the remainder of this paper, we
will implicitly view ν0 as a measure on {u}. Thus in place of (b) of Proposition 2.1, we will use
the following decomposition, which is proved in exactly the same way.

Proposition 2.4.

dµ0(u, ρ∞) = dν0(u)× dρ∞
ρ∞

,

where ν0 is a finite measure (which we will normalize to have unit mass).
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3 Variational formulas

Since the measure µ0 has a local form of conformal invariance, it is natural to suspect that there
are senses in which the measure is infinitesimally conformally invariant. For this reason we need
to consider how φ± vary when the curve γ is varied by a local deformation z 7→ z+ εv(z), where
v(z) is holomorphic in C \ {0}. This deformation corresponds to a real vector field

→
v = v1

∂

∂x
+ v2

∂

∂y
,

where v = v1 + iv2. Let
−→
W denote the real Lie algebra of all such vector fields, where v(z) has

a finite Laurent expansion.

For technical reasons, we distinguish
−→
W from the Witt algebraW, which consists of holomor-

phic vector fields v(z) ∂∂z , where again v(z) has a finite Laurent expansion. The Witt algebra is
a complex Lie algebra. It is spanned over C by the vector fields

Ln = −zn+1 ∂

∂z
, n ∈ Z

with bracket

[Ln, Lm] = (m− n)Ln+m.

W ∗ consists of antiholomorphic vector fields. It is spanned by {Ln : n ∈ Z}.
The precise relationship between

−→
W and W is that there is a real embedding

−→
W →W ⊕W∗ :

→
v = v1

∂

∂x
+ v2

∂

∂y
→ v(z)

∂

∂z
+ v∗(z)

∂

∂z
. (3.1)

Loosely speaking,
−→
W is the Witt algebra considered as a real Lie algebra (see [7, p. 115]).

The reason for maintaining a distinction is that the variational formulas below will naturally

define a real representation of the real Lie algebra
−→
W . However it is convenient to express

this representation in terms of an associated complex representation of W. We will write the
map (3.1) as

→
L ↔ (L,L).

In particular

→
Ln ↔ (Ln, Ln) and

−→
iLn ↔ (iLn, iLn) = (iLn,−i(Ln)).

3.1 Variational formulas, I
−→
W can be viewed as a Lie algebra of vector fields on Loop1(C \ {0}), where by definition
a vector field on a self-avoiding loop is simply a R2-valued vector field along the loop (the
degree of smoothness of a loop is not relevant here). In particular

→
Ln
∣∣
γ

=
d

dt
exp

(
t
→
Ln
)
(γ)|t=0

and similarly for
−→
iLn. The corresponding actions on a function of γ are given by

→
Ln · F (γ) =

d

dt

∣∣
t=0

F
(

exp
(
−t
→
Ln
)
(γ)
)

=
d

dt

∣∣
t=0

F
(
γ + tγn+1

)
,

where in the last line we have implicitly chosen a parameterization for γ, and similarly for
−→
iLn.
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When n ≥ −1, Ln = −zn+1 ∂
∂z is regular at z = 0. In this case it is very easy to find the

variations of φ+ with respect to
→
Ln and

−→
iLn.

Proposition 3.1.

(a) For n ≥ 0,
→
Lnφ+ = φn+1

+ . In particular

→
L0ρ0 = ρ0, and

→
L0uk = 0, k ≥ 1,

and for n > 0

→
Lnρ0 = 0,

→
Lnuk = 0 k < n,

→
Lnun = ρn0 ,

and for n < k

→
Lnuk = ρn0p

(n+1)
k−n (u1, . . . , uk−n),

where

(
1 + u1z + u2z

2 + · · ·
)n+1

=

∞∑
l=0

p
(n+1)
l (u1, . . . , ul)z

l.

(b)
→
L−1φ+ = 1 + u′(z)

(
−1 + (u1 − u∗1)z + z2

)
.

(c) For n > 0,
(−→
iLn

)
φ+ = iφn+1

+ , and
(−→
iL0

)
φ+ = i(φ+ − zφ′+).

(d) (
−→
iL−1)φ+ = i

(
1 + u′(z)

(
−1 + (u1 + u∗1)z − z2

))
.

Proof.
→
L0 is infinitesimal dilation. In this case the formulas in part (a) are obvious, because

σ(γ) is unchanged when γ is dilated.

For n ≥ −1 and ε sufficiently small, a uniformization for the region inside γ + εγn+1 is the
composition

φ+ + ε(φ+)n+1.

This uniformization has to be composed with a linear fractional transformation to obtain the
correct normalization. Consequently

φ+

(
γ + εγn+1

)
(z) =

(
φ+ + ε(φ+)n+1

)( λ(ε)z + ω(ε)

1 + ω(ε)∗λ(ε)z

)
, (3.2)

where λ (having unit norm) and ω are determined by the conditions that this uniformization
vanishes at z = 0 and has positive derivative at z = 0.

Suppose n ≥ 0. In this case the linear fractional transformation is the identity for all ε. This
implies part (a).

Part (b), when n+ 1 = 0, is slightly more involved. In this case

(→
L−1φ+

)
(z) =

d

dε

∣∣
ε=0

(
φ+

(
λ(ε)z + ω(ε)

1 + ω(ε)∗λ(ε)z

)
+ ε

)
= φ′+(z)

(
λ̇(0)z + ω̇(0)− zω̇(0)∗z

)
+ 1. (3.3)
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To calculate the derivatives at zero, we use the normalizations for the mapping (3.2). Because 0
is mapped to zero,

ε+ φ+(ω(ε)) = 0.

This implies

ω(ε) = φ−1
+ (−ε) and ω̇(0) = −ρ−1

0 .

Secondly the derivative of the map (3.2) at z = 0 must be positive. Thus

φ′+(ω(ε))λ(ε)
(
1− |ω(ε)|2

)
> 0

and (because λ has unit norm)

λ(ε)−1 = exp(i Im(log(φ′+(ω(ε))))).

This implies

λ̇(0) = −i Im

(
φ′′+(ω(0))ω̇(0)

φ′+(ω(0))

)
= −2i Im

(
u1

ρ0

)
.

Plugging these derivatives into (3.3) yields

→
L−1φ+ = 1 + ρ0

(
1 + 2u1z + 3u2z

2 + · · ·
)(u1 − u∗1

ρ0
z − 1

ρ0
+

1

ρ0
z2

)
.

This implies part (b).
Parts (c) and (d) are similar. For part (c), when n = 0, note that(

exp
(
iθ
→
L0

)
φ+

)
(z) = eiθφ+

(
e−iθz

)
,

so that

exp
(
iθ
→
L0

)
ρ0 = ρ0 and exp

(
iθ
→
L0

)
uk = e−ikθuk.

For part (d), when n+ 1 = 0,

φ+(γ + iε)(z) = φ+

(
λ(ε)z + ω(ε)

1 + ω(ε)∗λ(ε)z

)
+ iε (3.4)

and (−→
iL−1φ+

)
(z) =

d

dε

∣∣
ε=0

(
φ+

(
λ(ε)z + ω(ε)

1 + ω(ε)∗λ(ε)z

)
+ iε

)
= φ′+(z)

(
λ̇(0)z + ω̇(0)− zω̇(0)∗z

)
+ i. (3.5)

To calculate the derivatives at zero, we use the normalizations for the mapping (3.4). Because 0
is mapped to zero,

iε+ φ+(ω(ε)) = 0.

This implies

ω(ε) = φ−1
+ (−iε) and ω̇(0) = −iρ−1

0 .
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Secondly the derivative of the map (3.4) at z = 0 must be positive. Thus

φ′+(ω(ε))λ(ε)
(
1− |ω(ε)|2

)
> 0

and (because λ has unit norm)

λ(ε)−1 = exp
(
i Im(log(φ′+(ω(ε))))

)
.

This implies

λ̇(0) = −i Im

(
φ′′+(ω(0))ω̇(0)

φ′+(ω(0))

)
= 2i Im

(
iu1

ρ0

)
= i

u1 + u∗1
ρ0

.

Plugging these derivatives into (3.5) yields

−→
iL−1φ+ = i+ ρ0

(
1 + 2u1z + 3u2z

2 + · · ·
)( i(u1 + u∗1)

ρ0
z − i

ρ0
− i

ρ0
z2

)
.

This implies part (d). �

3.2 (Lack of) Equivariance for W

We have already observed that the welding map is equivariant with respect to the actions of
rotation of loops and conjugation of homeomorphisms; see (f) of Proposition 2.1.

Given |w| < 1, define φ1(w) ∈ PSU(1, 1) (viewed as the group of automorphisms of the
Riemann sphere which stabilize the circle) by

φ1(w; z) =
z + w̄

1 + wz
.

Proposition 3.2. Suppose that γ ∈ Loop1(C \ {0}) such that φ1(ε, γ) ∈ Loop1(C \ {0}). Then
to first order in ε

(a) φ+(φ1(ε, γ)) = φ1(ε) ◦ φ+(γ) ◦ φ1(−ε/ρ0) ◦ exp(2i Im(u1ε̄)/ρ0),

(b) φ−(φ1(ε, γ)) = φ1(ε) ◦ φ−(γ) ◦ φ1(−ρ∞ε) ◦ exp(−2iρ∞ Im(b1ε)),

(c) σ(φ1(ε, γ)) = exp(−2iρ∞ Im(b1ε)) ◦ φ1(ρ∞ε) ◦ σ(γ) ◦ φ1(−ε/ρ0) ◦ exp(2i Im(u1ε̄)/ρ0).

Remark 3.3. The formula in (c) illustrates how the welding map is trying (with limited success)
to intertwine the action of PSU(1, 1) on loops with its action by conjugation on the welding
homeomorphism.

Proof. A uniformization for the region inside γ(ε) is the composition

φ1(ε, φ+(γ)(z)).

This uniformization has to be precomposed with a linear fractional transformation to obtain the
correct normalization. Consequently

φ+(γ(ε)) = φ1(ε) ◦ φ+(γ) ◦ Φ1(ε),

where

Φ1(ε, z) =
λ(ε)z + ω(ε)

1 + ω(ε)λ(ε)z
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and λ (having unit norm) and ω are determined by the conditions that this uniformization
vanishes at z = 0 and has positive derivative at z = 0.

The first condition implies

Φ1(ε, 0) = ω(ε) = φ−1
+ (−ε) = − ε

ρ0
+O

(
ε2
)
,

in particular ω′(0) = −ρ−1
0 . Note that for Φ1 to exist, −ε must be in U+. The second condition

φ1(ε)′[φ+ ◦ Φ1(0)]φ′+[Φ1(0)]Φ′1(0) > 0

is equivalent to

φ1(ε)′[φ+(ω(ε)]φ′+[ω(ε)]λ
(
1− |ω|2

)
> 0

or

λ(ε) =
φ1(ε)′[φ+(ω(ε)]φ′+[ω(ε)]

|φ1(ε)′[φ+(ω(ε)]φ′+[ω(ε)]|
.

Use

φ1(ε)′(z) =
1− |ε|2

(1 + εz)2
,

φ+(ω(ε)) = ρ0ω(ε) +O
(
ε2
)

= −ε+O
(
ε2
)
,

φ1(ε)′(φ+(ω(ε)) =
1− |ε|2(

1 + ε
(
− ε
ρ0

+O
(
ε2
)))2 = 1 +O

(
ε2
)
,

φ′+[ω(ε)] = ρ0 + 2ρ0u1ω(ε) = ρ0 − 2u1ε+O
(
ε2
)
.

Putting everything together

λ(ε) =
(1 + ε2 + · · · )(ρ0 − 2u1ε+ · · · )
|(1 + ε2 + · · · )(ρ0 − 2u1ε+ · · · )|

= 1− 2
(u1 − u1)ε

ρ0
+O

(
ε2
)
.

This implies the formula in (a).
In a similar way

φ−(φ1(ε; γ)) = φ(ε) ◦ φ−(γ)Ψ1

and one precedes as before. This leads to (b) and (c). �

3.3 Variational formulas, II

It is far more difficult to calculate
→
L−nφ+ for n > 1. In this case z−n+1 is regular at z = ∞.

This is the situation considered in [9], with slight modifications. The following statement is
essentially equation (17) in [9].

Proposition 3.4. Suppose that n ≥ 1. Then

(a)
→
L−nρ0 = ρ−n+1

0 Re(Pn(u1, . . . , un)), where

Pn(u1, . . . , un) = Res

((
U ′(t)

U(t)

)2

t−n+1, t = 0

)
(as always, U is the mapping inverse to u). If deg(uj) = j, then Pn is a homogeneous
polynomial of degree n.
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(b) For k ≥ 1

→
L−nuk = ρ−n0

(
kuk Re(B0) +

k∑
m=1

(k + 1−m)uk−m(B−m +Bm)

)
,

where

Bm = Res

((
U ′(t)

U(t)

)2

U(t)mt−n+1, t = 0

)
= Res

(
u(z)−n+1

u′(z)
zm−2, z = 0

)
.

(c)
−→
iL−nρ0 = −ρ−n+1

0 Im(Pn(u1, . . . , un)).

(d) For k ≥ 1

−→
iL−nuk = −ρ−n0

(
kuk Im(B0) +

k∑
m=1

(k + 1−m)uk−mi(−B−m +Bm)

)
.

Remarks 3.5. (a) It is natural to restate the relationship between the Pn and U in terms of
quadratic differentials

(∂ log(U(t)))2 =
∞∑
n=0

Pn(u)tn
(
dt

t

)2

,

where t = u(z), z = U(t). In Section 7 it will be convenient to rewrite this as

(
∂ log

(
φ−1

+ (t)
))2

=

∞∑
n=0

ρ−n0 Pn(u)tn
(
dt

t

)2

and to set Pn(φ+) = ρ−n0 Pn(u). Hopefully this will not cause any confusion.
(b) Similarly the residue formula for Bm is naturally understood as the integral over γ of

the natural pairing of the holomorphic vector field −v(t) ddt and the holomorphic quadratic
differential U(t)m(∂ log(U(t)))2.

For later reference we note some elementary properties of the polynomials Pn.

Proposition 3.6.

(a) Pn(u) is a homogeneous polynomial in u1, . . . , un of degree n, where deg(uj) = j, with
integer coefficients.

(b) Pn(u) = −2nun + terms involving u1, . . . , un−1.

(c) un is a homogeneous polynomial in P1, . . . , Pn of degree n, where deg(Pj) = j, with rational
coefficients.

(d) un = − 1
2nPn + terms involving P1, . . . , Pn−1.

Thus Z[P1, . . . , Pn] ⊂ Z[u1, . . . , un] is a proper inclusion, but over Q they are the same.
At this point we have formulas for the action of the real Witt algebra on the coefficients

of φ+. If we write

1

φ−( 1
w )

=
1

ρ∞
w

(
1 +

∑
n≥1

lnw
n

)
,

where w = 1
z is the standard coordinate at infinity, then we can also write down formulas for

the action of the real Witt algebra on the coefficients of φ−. We will postpone this until the
next section.
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4 Reformulation of the variational formulas

4.1 Preliminary comments on representations

Above we have considered a representation of the real Lie algebra
−→
W by real derivations on

a space of complex-valued functions on Loop1(C \ {0}). This representation is real, in the sense
that the set of real functions is stable, or equivalently that the action commutes with complex
conjugation of functions.

To be precise, fix λ ∈ C. The Duren–Schiffer formulas imply that there is a real representation

of the real Lie algebra
−→
W by real derivations on the spaces of complex-valued functions

C
[
u1, u1, u2, . . . ; ρ0, ρ

−1
0

]
ρλ0 , C

[
l1, l1, l2, . . . ; ρ∞, ρ

−1
∞
]
ρ−λ∞ ,

and

C
[
u1, u1, u2, . . . ; l1, l1, l2, . . . ; ρ0, ρ

−1
0 ; ρ∞, ρ

−1
∞
]
aλ.

Denote this real action of
−→
W by π0. By abstract nonsense there is an associated complex

representation of W by complex derivations of the algebra of complex-valued functions of self-
avoiding loops, defined by

π(L) =
1

2

(
π0

(→
L
)
− iπ0

(−→
iL
))
.

There is also a representation

π
(
L
)

=
1

2

(
π0

(→
L
)

+ iπ0

(−→
iL
))
.

This is a complex representation of W =W∗ by complex derivations.
In turn, in terms of the real embedding (3.1)

π0

(→
L
)

= π(L) + π
(
L
)
.

The point of this translation is that the complex representations π and π are easier to analyze.
In fact (on proper domains) they can be expressed in terms of highest weight representations,
and this allows us to access well-known results from the theory of highest weight representations
of the Virasoro algebra (at the moment the central charge c = 0, so that we are only considering
the Witt algebra).

4.2 Formulas for the representation π

Proposition 4.1.

(a) (π(L0)φ+)(z) = φ+(z)− 1
2zφ

′
+(z). In particular

π(L0)ρ0 =
1

2
ρ0 and π(L0)uk = −1

2
kuk, k ≥ 1.

(b) For n > 0, π(Ln)φ+ = φn+1
+ . In particular

π(Ln)ρ0 = 0, π(Ln)uk = 0 k < n, π(Ln)un = ρn0

and in general

π(Ln)uk = ρn0p
(n+1)
k−n (u1, u2, . . . ),



16 A. Chavez and D. Pickrell

where

(
1 + u1z + u2z

2 + · · ·
)n+1

=
∞∑
l=0

p
(n+1)
l zl.

(c) π(L−1)φ+ = 1 + u′(z)(−1 + u1z). In particular

π(L−1)ρ0 = −u1, π(L−1)(ρ0u1) = −3u2 + 2u2
1

and in general

π(L−1)(ρ0un) = −(n+ 2)un+1 + (n+ 1)unu1.

Hence

π(L−1)un =
n+ 2

ρ0
(u1un − un+1).

(d) For n > 1, π(L−n)ρ0 = 1
2ρ
−n+1
0 Pn(u1, . . . , un), where

Pn(u1, . . . , un) = B0(n) = Res

((
U ′(t)

U(t)

)2

t−n+1, t = 0

)
.

If deg(uj) = j, then Pn is a homogeneous polynomial of degree n.

(e) For k ≥ 1

π(L−n)uk = ρ−n0

(
k

2
ukB0(n) +

k∑
m=1

(k + 1−m)uk−mB−m(n)

)
.

Equivalently

π(L−n)(ρ0uk) = ρ−n+1
0

k∑
m=0

(k + 1−m)uk−mB−m(n)− ρ−n+1
0

k + 1

2
ukB0(n),

where

Bm(n) = Res

((
U ′(t)

U(t)

)2

U(t)mt−n+1, t = 0

)
= Res

(
u(z)−n+1

u′(z)
zm−2, z = 0

)
.

Using Lemma 4.4 below, this can be restated in the following way.

Proposition 4.2.

(a) For n ∈ Z

π(Ln)ρ0 =
1

2
ρ0 Res

(
φn+1

+ (z)

z2φ′+(z)
, z = 0

)
.

(b) For k ≥ 1

π(Ln)uk =
k

2
ukB̃0(n) +

k∑
m=1

(k + 1−m)uk−mB̃−m(n).



Werner’s Measure on Self-Avoiding Loops and Welding 17

Equivalently

Ln(ρ0uk) = ρn+1
0

k∑
m=0

(k + 1−m)uk−mB−m(n)− ρn+1
0

k + 1

2
ukB0(n),

where

B̃m(n) = Res

(
φ+(z)n+1

φ′+(z)
zm−2, z = 0

)
.

Remark 4.3. This second statement seems cleaner than the first. However, as we will see
when we introduce the energy-momentum tensor, the first statement has the advantage of being
stated in terms of the inverse of φ+.

To avoid cumbersome notation, we will often identify Ln with its corresponding operator,
π(Ln). Suppose that we write u0 = 1 and ak = ρ0uk, so that

φ+(z) =

∞∑
k=0

akz
k+1.

If n > 0 and k ≥ 1, then according to (e)

L−n(ak) =
k∑

m=0

(k + 1−m)ak−m Res

((φ−1
+

)′
(t)

φ−1
+ (t)

)2

φ−1
+ (t)−mt−n+1, t = 0


− k + 1

2
ak Res

((φ−1
+

)′
(t)

φ−1
+ (t)

)2

t−n+1, t = 0


and

L−n(φ+) =
∞∑
k=0

 k∑
m=0

(k + 1−m)ak−m Res

((φ−1
+

)′
(t)

φ−1
+ (t)

)2

φ−1
+ (t)−mt−n+1, t = 0


− 1

2
(k + 1)ak Res

((φ−1
+

)′
(t)

φ−1
+ (t)

)2

t−n+1, t = 0

 zk+1.

Lemma 4.4.

Res

((φ−1
+

)′
(t)

φ−1
+ (t)

)2

φ−1
+ (t)−mt−n+1, t = 0

 = Res

(
φ+(z)−n+1

φ′+(z)z2+m
, z = 0

)
.

Proof. Fix a small circle C surrounding 0 in the t plane. Then

∫
C

((
φ−1

+

)′
(t)

φ−1
+ (t)

)2

φ−1
+ (t)−mt−n+1dt =

∫
φ−1
+ (C)

(
φ−1

+

)′
(φ+(z))2φ+(z)−n+1

zm+2
dφ+(z)

= 2πiRes

(
φ+(z)−n+1

φ′+(z)z2+m
, z = 0

)
. �

This can be restated more cleanly in the following way.
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Lemma 4.5.

ρ−n0 Bm(n) = Res

(
φ−n+1

+ (z)

φ′+(z)
zm−2, z = 0

)
.

Using the lemma we can write

L−n(φ+) =

∞∑
k=0

(
k∑

m=0

(k + 1−m)ak−m Res

(
φ+(s)−n+1

φ′+(s)s2+m
, s = 0

)
− 1

2
(k + 1)ak Res

(
φ+(s)−n+1

φ′+(s)s2
, s = 0

))
zk+1

= φ′+(z)

( ∞∑
m=0

(
φ−n+1

+

φ′+

)
m+1

zm+1 − zRes

(
φ+(s)−n+1

φ′+(s)s2
, s = 0

))

= φ′+(z)

((
φ+(z)−n+1

φ′+(z)

)
++

− zRes

(
φ+(s)−n+1

φ′+(s)s2
, s = 0

))
.

The pleasant surprise is that this expression leads to a formula which is valid for all n.

Theorem 4.6. For any n ∈ Z

Ln(φ+)(z) = φ′+(z)

(
φ+(z)n+1

φ′+(z)

)
++

− 1

2
zφ′+(z) Res

(
φ+(s)n+1

φ′+(s)s2
, s = 0

)
and

Ln(u)(z) = ρn0

(
u′(z)

(
u(z)n+1

u′(z)

)
++

− 1

2
(zu′(z) + u(z)) Res

(
u(s)n+1

u′(s)s2
, s = 0

))
.

Proof. We just need to check that this formula agrees with our previous calculations when
n ≥ 0. This is straightforward. �

4.3 Formulas for π

Proposition 4.7.

(a) π(L0)φ+ = 1
2zφ

′
+(z). In particular

π(L0)ρ0 =
1

2
ρ0 and π(L0)uk =

k − 1

2
uk, k ≥ 1.

(b) For n > 0, π(Ln)φ+ = 0.

(c) π(L−1)φ+ = u′(z)(−u∗1z + z2). In particular

π(L−1)ρ0 = −u∗1, π(L−1)u1 = ρ−1
0 (1− u1u

∗
1).

In general

π(L−1)un = ρ−1
0 n(un−1 − u∗1un).

(d) For n > 1, π(L−n)ρ0 = 1
2ρ
−n+1
0 Pn(u1, . . . , un)∗.
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(e) For k ≥ 1

L−nuk = ρ−n0

(
k

2
ukB0(n)∗ +

k∑
m=1

(k + 1−m)uk−mBm(n)∗

)
.

Equivalently

L−n(ρ0uk) = ρ−n+1
0

k∑
m=0

(k + 1−m)uk−mBm(n)∗ − ρ−n+1
0

k + 1

2
ukB0(n)∗.

Now we want to add things up as in the preceding section. As before we write φ+(z) =∑
akz

k+1, where ak = ρ0uk and it is understood that u0 = 1. By part (e)

L−n(ak) = ρ−n0

k∑
m=0

(k + 1−m)ak−mBm(n)∗ − ρ−n0

k + 1

2
akB0(n)∗.

By the change of variable lemma of the preceding subsection

ρ−n0 Bm(n) = Res

(
φ+(z)−n+1

φ′+(z)
zm−2, z = 0

)
.

Therefore

L−nφ+(z) = φ′+(z)

∞∑
m=0

((
φ+(z)−n+1

φ′+(z)

)
−m+1

)∗
zm+1 − 1

2
zφ′+(z)

((
φ+(z)−n+1

φ′+(z)

)
1

)∗
,

where the notation (· · · )k denotes the kth Fourier coefficient. This equals

φ′+(z)

∞∑
m=0

[(
φ+(z)−n+1

φ′+(z)

)∗
z2

]
m+1

zm+1 − 1

2
zφ′+(z)

((
φ+(z)−n+1

φ′+(z)

)
1

)∗

=

[(
z−2φ

−n+1
+ (z)

φ′+(z)

)∗]
++

− 1

2
zφ′+(z)

((
φ+(z)−n+1

φ′+(z)

)
1

)∗
.

As in the preceding subsection, we obtain the following uniform formula.

Theorem 4.8. For any n ∈ Z

Lnφ+(z) = φ′+(z)

([(
z−2φ

n+1
+ (z)

φ′+(z)

)∗]
++

− 1

2
z

(
(
φ+(z)n+1

φ′+(z)
)1

)∗)
.

Proof. We just need to check that this formula agrees with the formulas in Proposition 4.7.
This is again straightforward. �

4.4 Formulas for π0, revisited

We can use Theorems 4.6 and 4.8 to recast the Duren–Schiffer variational formulas in the
following form.
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Corollary 4.9. For all n ∈ Z,
→
Lnφ+ equals

φ′+(z)

[
φ+(z)n+1

φ′+(z)
+

(
z−2φ+(z)n+1

φ′+(z)

)∗]
++

− 1

2
z

(
Res

(
φ+(s)n+1

φ′+(s)s2
, s = 0

)
+ Res

(
φ+(s)n+1

φ′+(s)s2
, s = 0

)∗)
= φ′+(z)

(
1

2
(c1 + c1)z +

∑
k>1

(ck + c2−k)z
k

)
,

where

φ+(z)n+1

φ′+(z)
=

+∞∑
k=n+1

ckz
k.

Proof. By definition

−→
L nφ+ = Lnφ+ + Lnφ+.

Theorems 4.6 and 4.8 imply that this equals

φ′+(z)

[
φ+(z)n+1

φ′+(z)

]
++

− 1

2
zφ′+(z) Res

(
φ+(s)n+1

φ′+(s)s2
, s = 0

)
+ φ′+(z)

[(
z−2φ+(z)n+1

φ′+(z)

)∗]
++

− 1

2
zφ′+(z)

((
φ+(z)n+1

φ′+(z)

)
1

)∗
. �

It is obviously desirable to find a direct proof of these formulas which reflects their structure.

4.5 Calculations with φ−

On the one hand, in the standard w coordinate at ∞ ∈ P1,

1

φ−( 1
w )

=
1

ρ∞
w

(
1 +

∞∑
n=1

lnwn

)
.

The ln coordinates for φ− are analogous to the un coordinates for φ+, and variational formulas
for φ− essentially arise from substituting lj ’s for uj ’s in our earlier formulas. On the other hand,
in the standard z coordinate,

φ−(z) = ρ∞L(z) = ρ∞z

(
1 +

∞∑
m=1

bmz
−m

)

and it is occasionally useful to employ the bm coordinates. The relation between the two sets of
coordinates is standard.

Lemma 4.10.

C[l1, l2, . . . ] = C[b1, b2, . . . ].

In fact for each M

C[l1, l2, . . . , lM ] = C[b1, b2, . . . , bM ].
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Proof.

w

(
1 +

∞∑
n=1

lnw
n

)
=

1

1
w

(
1 +

∞∑
m=1

bmwm
)

or

1 +

∞∑
n=1

lnw
n =

1

1 +
∞∑
m=1

bmwm

implies

l1 = −b1, l2 = −b2 + b21, . . . . �

The φ− analog of Theorems 4.6 and 4.8 is the following theorem. In the statement, for a Lau-
rent expansion convergent in an annulus R < |z| < ∞, we use the notation Res(

∑
gmz

m, z =
∞) = −g−1 (This is actually the residue of the differential g(z)dz at z = ∞ in the Riemann
sphere).

Theorem 4.11. Let n ∈ Z.

(a)

Ln(φ−(z)) = −z2φ′−(z)

[(
φ−(z)n+1

z2φ′−(z)

)
−

+
z−1

2
Res

(
φ−(t)n+1

t2φ′−(t)
, t =∞

)]
and

Ln(L(z)) = −ρ
n
∞
2

Res

(
L(t)n+1

t2L′(t)
, t =∞

)
L(z)

− ρn∞z2L′(z)

[(
L(z)n+1

z2L′(z)

)
−

+
z−1

2
Res

(
L(t)n+1

t2L′(t)
, t =∞

)]
.

(b)

Ln(φ−(z)) = −z2φ′−(z)

[
z−1

2
Res

(
φ−(t)n+1

t2φ′−(t)
,∞
)∗

+

((
φ−(z)n+1

φ′−(z)

)∗)
−

]
and

Ln(L(z)) = −ρ
n
∞
2

(
L(z) + zL′(z)

)
Res

(
L(t)n+1

t2L′(t)
, t =∞

)∗
− ρn∞z2L′(z)

((
L(z)n+1

L′(z)

)∗)
−
.

4.6 Representation-theoretic consequences

The formulas of the preceding section imply that π is a complex representation of the Witt
algebraW by derivations of the algebra Ω0(ρ0)⊗C[u1, u2, . . . ], where Ω0(ρ0) denotes any algebra
of smooth functions of ρ0.

Consider the action of W on the vector space

C
[
ρλ0 , ρ0, ρ

−1
0 , u1, u2, . . .

]
,
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where λ is a fixed complex number. For n > 0 the operators Ln kill ρλ0 , and the spectrum of L0

on the W-module generated by ρλ0 is {λ/2 + n : n = 0, 1, . . . }. We will refer to this as a lowest
weight module (admittedly there are conflicting conventions). The following proposition follows
from well-known facts about such representations (see [11]).

Proposition 4.12. For any λ ∈ C,

(a) The representation generated by the π action of W on ρλ0 is a realization of the unique
irreducible lowest weight representation of the Virasoro algebra with central charge c = 0
and h = 1

2λ. If λ 6= −m2−1
12 , then

π(U(W))ρλ0 =
∞⊕
n=0

ρλ−n0 C[u1, u2, . . . ]
(n),

where uj has degree j. Otherwise there is a proper containment.

(b) Similarly, the representation generated by the π action of W on ρ−λ∞ is a realization of
the highest weight representation of the Virasoro algebra with central charge c = 0 and
h = −λ

2 . If λ 6= −m2−1
12 , then

π(U(W))ρ−λ∞ =
∞⊕
n=0

ρ−λ−n∞ C[l1, l2, . . . ]
(n),

where lj has degree j. Otherwise there is a proper containment.

Remark 4.13. The realization of the lowest weight representation in part (a) is related in
a relatively simple way to the realization, using geometric quantization techniques, due to Kirillov
and Yuriev in [12]. In [12] W acts on a space of sections of a line bundle (parameterized by
c = 0 and h = λ/2) over (a somewhat imprecisely defined) space of Schlicht functions u ∈ S
(normalized univalent functions on the disk, viewed as a homogeneous space for Diff(S1)).
In coordinates (by trivializing the line bundle) this vector space is identified with C[u1, u2, . . . ],
polynomials in the coefficients of the univalent function u, and the formulas for the action appear
in (8) of [12] (with c = 0, and one takes the negative of the operators, because we consider the
opposite of the bracket in [12]). The intertwining operator from Kirillov and Yuriev’s realization
to our realization in (a) is given by the map

C[u1, u2, . . . ]→ C
[
ρλ0 , ρ0, ρ

−1
0 , u1, u2, . . .

]
: P (u1, u2, . . . ) 7→ P

(
U1/ρ0, U2/ρ

2
0, . . .

)
ρλ0 ,

where U = t(1 +
∑
n>0

Unt
n) is the inverse to the univalent function u = z

(
1 +

∑
n>0

unz
n
)
. An

advantage of our realization is that the operators are derivations of an algebra, which makes
them more amenable to calculations. This will appear in the first author’s dissertation.

4.7 Stress-energy formulation

Consider the standard holomorphic coordinate z = x + iy. In real coordinates the symmetric
stress tensor has the form

T =
(
dx dy

)(T11 T12

T21 T22

)(
dx
dy

)
,

where T12 = T21. In complex coordinates

T =
(
dz dz

)( T11 − T22 − 2iT12 T11 + T22 + i(T12 − T21)
T11 − T22 + i(T21 − T12) T11 − T22 + 2iT12

)(
dz
dz

)
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=
(
dz dz

)(T11 − T22 − 2iT12 T11 + T22

T11 + T22 T11 + T22 + 2iT12

)(
dz
dz

)
.

Conformal invariance is implied by the trace condition

tr(T ) = T11 + T22 = 0

(see [7, p. 101 and p. 103]). In complex coordinates this implies that T is diagonal.
In a conformal field theory with central charge c = 0

T (z) := (T11 − T22 − 2iT12)dz2 =
∞∑

n=−∞
Lnz

−n
(
dz

z

)2

is a holomorphic quadratic differential (see [7, p. 155]; note: for c 6= 0, the stress energy “tensor”
is actually a holomorphic projective connection; see [7, p. 136] or [15, p. 532]).

We are seeking a completely natural formulation for the action of the Witt algebra

Proposition 4.14.

T (t)ρ0 =
ρ0

2

(
∂ log

(
φ−1

+ (t)
))2

, T (t)ρ∞ = −ρ∞
2

(
∂ log

(
φ−1
− (t)

))2
.

Proof. By definition

T (t)ρ0 =
∞∑

n=−∞
L−n(ρ0)tn

(
dt

t

)2

.

By part (a) of Proposition 4.2, this equals

1

2
ρ0

∞∑
n=0

Res

((φ−1
+

)′
(t)

φ−1
+ (t)

)2

t−n+1, t = 0

 tn
(
dt

t

)2

=
ρ0

2

(
∂ log

(
φ−1

+ (t)
))2

.

This proves the first statement. The proof of the second statement is similar. �

Corollary 4.15. In the sense of hyperfunctions

T (t)aλ =
λ

2

((
∂ log

(
φ−1

+ (t)
))2

+
(
∂ log

(
φ−1
− (t)

))2)
aλ.

Proof. From a formal power series point of view, this follows immediately from the proposition.
From the point of view of analysis, this equality has to be interpreted in a hyperfunction sense,
because the first term is holomorphic in U+ and the second term is holomorphic in U−. �

5 Infinitesimal invariance

Suppose that γ ∈ Loop1(C \ {0}). In terms of the standard coordinate z,

φ+(z) = ρ0(γ)u(z), u(z) = z

(
1 +

∑
n≥1

unz
n

)
.

In terms of the coordinate w = 1
z ,

1

φ−
(

1
w

) =
1

ρ∞
w

(
1 +

∑
n≥1

lnw
n

)
.
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The variational formulas of the preceding section imply that the vector space of functions of
the form

p(u1, . . . , un, u1, . . . , un)f(ρ0),

where p is a polynomial of any number of variables, and f has compact support in R+, is stable
with respect to the action of the Witt algebra (this applies both to the real action and the
complexified actions). Since the Witt algebra is stable with respect to z 7→ w = 1

z , the vector
space of functions of the form

p
(
l1, . . . , ln, l1, . . . , ln

)
f(ρ∞),

where p is a polynomial of any number of variables, and f has compact support in R+, is also
stable with respect to the action of the Witt algebra. Consequently the vector space of “test
functions” spanned by functions of the form

F = p
(
u1, . . . , u1, . . . , l1, . . . , l1, . . .

)
f(ρ0, ρ∞), (5.1)

where p is a polynomial and f has compact support in R+ × R+, is stable with respect to
the Witt algebra (for the real or complexified actions). In reference to F , since un and ln are
bounded (by constants depending only on n), p is bounded. The compact support condition
on f implies that F is supported on Loop1 of a fixed finite type annulus. Since µ0 has finite
measure on loops in a finite type annulus, F is integrable.

Proposition 5.1. The measure µ0 is infinitesimally conformally invariant, in the sense that
for any L ∈ W ×W∫

L(F )dµ0(γ) = 0

for any test function F as in (5.1).

Proof. It suffices to prove the proposition for
→
L ∈

−→
W .

By Koebe’s theorem, a test function F as in (5.1) is supported on Loop1({δ < |z| < δ−1}) for
some δ. Let A0 denote a finite type annulus containing {δ ≤ |z| ≤ δ−1}. For some positive t0,
for all |t| < t0, the flow exp(t~L) is defined on A0, and {δ ≤ |z| ≤ δ−1} will be contained in
∩t<t0At, where At := exp(t~L)A0. By local conformal invariance∫

Fdµ0 =

∫
FdµA0 =

∫ (
et
~L
)
∗FdµAt =

∫ (
et
~L
)
∗Fdµ0.

To complete the proof we need to justify taking the derivative with respect to t at t = 0
under the last integral. The derivative ~LF is another test function, necessarily bounded. The
translates(

et
~L
)
∗
(
~LF
)
, |t| < t0 (5.2)

are also uniformly bounded by the same constant. Moreover the translates (5.2) are all supported
on Loop1 of some finite type annulus, for which the µ0 measure is finite. Thus a multiple of the
characteristic function of Loop1 for this fixed finite type annulus is integrable and dominates all
of the translates (5.2). Hence by dominated convergence we can differentiate under the integral
sign. �
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Kontsevich and Suhov have conjectured that there is a converse of this result which holds
generally for their conjectural family of measures µc deforming µ0 (see Section 2.5.2 of [13]).

For the purposes of this paper, we need to be able to apply integration by parts to functions
which involve the bounded function aλ (λ > 0), rather than a function having compact support
in ρ0, ρ∞. One complication is that for ~L ∈ ~W,

~Laλ = λaλ−1~L(a)

is not necessarily bounded.

Lemma 5.2. Suppose that

F = p(u, u, l, l)f(ρ∞)aλ,

where p is a polynomial and f has compact support in R+. Then for any L ∈ W×W, for Re(λ)
sufficiently large,∫

L(F )dµ0(γ) = 0.

The same conclusion applies if we replace f(ρ∞) by f(ρ0).

Proof. Fix a smooth positive function g(ρ0) having compact support for ρ0 ∈ R+ and identi-
cally 1 in a neighborhood of ρ = 1. By Proposition 5.1, for each δ > 0,∫

L(g(δρ0)F )dµ0(γ) = 0

or

δ

∫
g′(δρ0)L(ρ0)Fdµ0 +

∫
g(δρ0)L(F )dµ0(γ) = 0.

Since g is fixed, the first term goes to zero as δ → 0. We can apply dominated convergence to
the second term, for sufficiently large λ (so that the part of the integrand not involving g is
bounded, and hence the integral is well-defined). This implies the Lemma. �

Proposition 5.3. Suppose that F = aλp(u, u, l, l), where p is a polynomial.

(a) If L = Ln or Ln with n ≤ 0, then for sufficiently large Re(λ)∫
L(F )|ρ∞=1dν0 = 0.

(b) If L = Ln or Ln with n ≥ 0, then for sufficiently large Re(λ)∫
L(F )|ρ0=1dν0 = 0.

Proof. Suppose that L = Ln or Ln with n < 0. Fix a smooth family of functions gδ(ρ∞) which
converges to the δ function at ρ∞ = 1. Using Ln(ρ∞) = 0 and Lemma 5.2,∫

L(Fgδ(ρ∞))dµ0 =

∫
L(F )gδ(ρ∞)dµ0 = 0.

Since L(F ) is bounded for sufficiently large Re(λ), the left hand side of the last equality converges
to
∫
L(F )dν0 as δ → 0. This implies part (a).

If L = Ln or Ln with n > 0, the same argument applies with gδ(ρ0) in place of gδ(ρ∞).

If L =
→
L0, then L(F ) = 0. We have previously observed that if L =

−→
iL0, then L exponentiates

to rotational symmetry of C \ {0}, and this corresponds to invariance of ν0 with respect to the
conjugation action of rotations on homeomorphisms. �
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In the sections below, we will repeatedly apply a variation of the preceding proof in the
following way. Suppose that n > 0 and L = Ln or L = Ln. Then as in the proof∫

L
(
ρ−nFgδ(ρ0)

)
dµ0 =

∫
L(F )ρ−n0 gδ(ρ0)dµ0 = 0.

We can take the limit as δ → 0, because the support of gδ remains bounded, and ρ−n0 will be
bounded in this support region. This implies∫

L(F )ρ−n0 dν0 = 0,

which can be written heuristically as∫
L(F )ρ−n0 δ1(ρ0)dµ0 = 0,

where δ1 denotes the Dirac delta function at 1. There are similar integral formulas involving L−n,
but then we must use an approximation to δ1(ρ∞).

6 Calculating moments

Throughout this section, to simplify notation, we will write E(·) =
∫

(·)dν0.

6.1 The basic idea

Suppose that n > 0. The basic observation is that if p(u) is homogeneous of degree n, where
deg(uj) = j, then L−n(ρn0p(u)) does not depend upon ρ0. Recall also that L−n(ρ∞) = 0. We
can now apply infinitesimal invariance to obtain

E
(
L−n

(
ρn0p(u)

))
=

∫
L−n

(
ρn0p(u)

)
δ1(ρ∞)dµ0 = 0,

which gives rise to an integral formula.
To prove Theorem 1.7, we use the identity

L−1(ρ0un+1ūn) = −(n+ 2)un+1ūn+1 + (n+ 1)unūn. (6.1)

Theorem 6.1.∫
unu

∗
ndν0 =

1

n+ 1
.

Proof. Formula (6.1), together with infinitesimal invariance, implies the recursion relation

−(n+ 2)E(un+1ūn+1) + (n+ 1)E(unūn) = 0

with the initial condition E(u0ū0) = E(1) = 1. �

We will use the following notation throughout this section.

Definition 6.2.

(a)

C[u](n) := span

∏
k≥1

upkk :
∑
k≥1

kpk = n

 ,

i.e. the ein eigenspace for the action of rotations; C[ū](n) is defined similarly.
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(b) For each n ≥ 1 we denote

C[u, ū](n,n) := span

∏
k≥1

upkk ū
qk
k :

∑
k≥1

kpk =
∑
k≥1

kqk = n


or in other words C[u, ū](n,n) ∼= C[u](n) ⊗ C[ū](n). We will refer to elements in the vector
space C[u, ū](n,n) as being of level n.

Note that the dimension of C[u](n) is p(n), the number of partitions of n, hence grows very
rapidly.

The rationale for the notation is the following. The outer tensor product, W × W̄, acts on
the tensor product C[u] ⊗ C[ū]. The product of the corresponding rotation groups acts, and
induces a bigrading. In (b) we are considering the 0-eigenspace for the real embedded rotation
group.

If x ∈ C[u, ū](n,n
′), then one may verify

E(x) = ei(n−n
′)E(x)

using the rotational invariance of Werner’s measure. Therefore, we restrict ourselves to comput-
ing integrals of elements at levels n = 1, 2, . . . (i.e., n = n′).

Suppose 1 ≤ m ≤ n. In general, we can obtain integral identities by computing

L−m ◦ ρm0 : C[u, ū](n,n−m) −→
m⊕
j=0

C[u, ū](n−j,n−j), m ≥ 1, (6.2)

and applying infinitesimal invariance. As we will see in the following sections, we are particularly
interested in the cases m = 1, 2.

Remark 6.3. In (6.2) it is necessary to restrict consideration to L−m for m ≥ 1, because we
actually need this derivative to fix ρ∞. Otherwise we cannot apply integration by parts to
obtain integrals.

We will now give an example, where we compute the integrals for all elements of level 2. The
single equation

L−2

(
ρ2

0u
2
1

)
= −6u1ū1 + 14u2

1ū
2
1 − 8u2

1ū2

implies

14E
(
u2

1ū
2
1

)
= 6E(u1ū1) + 8E

(
u2

1ū2

)
by infinitesimal invariance. Therefore,

14E
(
u2

1ū
2
1

)
= 3 + 8E

(
u2

1ū2

)
(6.3)

by Theorem 1.7. On one hand,

L−1

(
ρ0u

2
1ū1

)
= −3u2

1ū2 + 2u1ū1.

On the other hand,

L−1

(
ρ0ū

2
1u1

)
= −3ū2

1u2 + 2u1ū1.

Therefore,

E
(
u2

1ū2

)
= E

(
u2ū

2
1

)
=

1

3
.

Equation (6.3) can now be used to obtain the following.

Proposition 6.4.

E(u2ū2) =
1

3
, E

(
u2ū

2
1

)
= E

(
ū2u

2
1

)
=

1

3
, E

(
|u1|4

)
=

17

42
.
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6.2 Expressions for L−1

Consider (6.2) in the case m = 1. The first expression we derive for this operator is purely
algebraic.

Lemma 6.5. Suppose that
∑
kpk = n and

∑
kqk = n− 1 and let upūq :=

∏
k

upkk ū
qk
k . Then

L−1

(
ρ0u

pūq
)

=

∑
j≥1

jpju
−1
j uj−1u

pūq

+

(2
∑
j≥1

qj − 2

)
ū1u

pūq


−

∑
j≥1

(j + 2)qj ū
−1
j ūj+1u

pūq

 .

The first sum of terms are of level n− 1, and the other terms are of level n.

Proof. We calculate

L−1

(
ρ0u

pūq
)

= −ū1u
pūq +

∑
j≥1

pjupj−1
j j(uj−1 − u∗1uj)

∏
k 6=j

upkk

∏
k≥1

ūqkk

+ qj ū
qj−1
j (j + 2)(u1uj − uj+1)∗

∏
k≥1

upkk

∏
k 6=j

ūqkk


= −ū1u

pūq +
∑
j≥1

(
jpju

−1
j uj−1 + ((j + 2)qj − jpj)ū1

− (j + 2)qj ū
−1
j ūj+1

)∏
k

upkk ū
qk
k .

This simplifies to the expression in the statement of the lemma. �

The second expression is in terms of divergence-type differential operators. We also note
that the homogeneity condition on the domains can be expressed in terms of divergence-type
operators.

Proposition 6.6. Let n ≥ 1.

(a)

C[u](n) =

{
P ∈ C[u] :

∑
j≥1

juj
∂P

∂uj
= nP

}
.

(b) Suppressing ρ0, the map

C[u](n) ⊗ C[ū](n−1) proj ◦L−1−→ C[u](n) ⊗ C[ū](n)

is of the form 1⊗R1, where

R1 =
∑
k≥1

(2ū1ūk − (k + 2)ūk+1)
∂

∂ūk
− 2ū1.

(b′) The linear map R1 is injective.
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(c) Similarly,

C[u](n) ⊗ C[ū](n−1) proj ◦L−1−→ C[u](n−1) ⊗ C[ū](n−1)

is of the form N1 ⊗ 1, where

N1 =
∑
j≥1

juj−1
∂

∂uj
.

Proof. We will prove (b′): If n = 1, then R1 : C → C[ū](1) is injective by dimension conside-
rations. If n ≥ 2, then consider the representation π̄ of W on C[ρ0, u]. For the lowest-weight
representation generated by ρn−1

0 , we have c = 0 and h = −(n−1
2 ) (see Section 4.6). This is

a reducible Verma module if and only if

−(n− 1) =
m2 − 1

12
.

When the Verma module is irreducible, the creation operator L−1 is injective at each level,
i.e. R1 is injective. Notice that the same thing would be true for L−k for any k > 0. �

Remark 6.7. For uP ūQ ∈ C[u](n)⊗C[ū](n) such that ūQ is in the image of R1, there is a recursion
formula

E
(
uP ūQ

)
= E

(
(N1 ⊗ 1)

(
uPR

−1
1

(
ūQ
)))

= E
(
N1

(
uP
)
R
−1
1

(
ūQ
))
,

where we are denoting a partial inverse to R1 by R
−1
1 . Unfortunately this does not make any

sense for most Q.

Definition 6.8. For a single complex variable z, we define 1√
k!
zk to be an orthonormal basis

for C[z]. For a tensor product such as

C[u] = C[u1]⊗ C[u2]⊗ · · ·

we take the tensor product Hilbert space structure, meaning that 1√
p!
up is an orthonormal basis,

where

p! := p1!p2! · · · .

Proposition 6.9.

(a) The adjoint of

C[ū](n−1) R1−→ C[ū](n),

where

R1 =
∑
k≥1

(2ū1ūk − (k + 2)ūk+1)
∂

∂ūk
− 2ū1

is

C[ū](n−1) R
t
1←− C[ū](n)

given by

R
t
1 =

∑
k≥1

(
2ūk

∂

∂ū1

∂

∂ūk
− (k + 2)ūk

∂

∂ūk+1

)
− 2

∂

∂ū1
.
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(b) Let K denote the kernel of Rt1, i.e. the cokernel of R1 (or the orthogonal complement of
the image of R1). Then

0←− C[u](n−1) Rt1←− C[u](n) ←− K ←− 0,

i.e., Rt1 is surjective.

(c) (
Image(1⊗R1) + Image(R1 ⊗ 1)

)⊥
= kernel

(
1⊗Rt1

)
∩ kernel

(
Rt1 ⊗ 1

)
= C[u](n) ⊗K ∩K ⊗ C[ū](n) = K ⊗K,

which has dimension (p(n)− p(n− 1))2 > 0 for n > 1 (p(·) is the partition function).

Proof. Because of the normalization for the Hermitian inner product, the adjoint for multipli-
cation by z on C[z] is ∂

∂z on the C[z], and vice versa. This leads to the formula for R
t
1.

Part (b) follows from the injectivity of R1 (see (b′) of Proposition 6.6).

Part (c) is elementary linear algebra: for the sum of two subspaces, the annihilators is the
intersection of the annihilators. �

Example 6.10. When n = 2,

kernel
(
Rt1
)

= C
{
u2

1

}
.

When n = 3,

kernel
(
Rt1
)

= C
{
u3

1 + 2u1u2

}
.

Note p(3)− p(2) = 3− 2 = 1.

When n = 4,

kernel
(
Rt1
)

= C
{

4u2
2 − 6u1u3, 3u2

1 + 16u2
1u2 + 16u1u3

}
.

Note p(4)− p(3) = 5− 3 = 2.

We will now give a slight generalization of Theorem 1.7 using the algebraic expression for L−1.

Corollary 6.11. Suppose that weight(p) = n. Then

E
(
upūn

)
=

1

n+ 1
.

Proof. The formula in Lemma 6.5 implies

L−1

(
ρ0u

pūn−1

)
=
∑
j≥1

jpju
−1
j uj−1u

pūn−1 − (n+ 1)upūn.

Thus we obtain a recursion relation

(n+ 1)E
(
upūn

)
=
∑
j≥1

jpjE
(
u−1
j uj−1u

pūn−1

)
.

The terms on the right hand side of the same form with weight = n − 1. Since
∑
j≥1

jpj = n,

induction implies the right hand side equals 1. This implies the corollary. �
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6.3 Expressions for L−2

We now consider the operator (6.2) in the case m = 2, which is substantially more complicated

than in the m = 1 case. Recall that p
(−1)
k denotes the Laurent coefficient of z

u(z) and P2 =

7u2
1 − 4u2.

Proposition 6.12. Let n ≥ 2.

(a) Suppressing ρ2
0, the map

C[u](n) ⊗ C[ū](n−2) proj ◦L−2−→ C[u](n) ⊗ C[ū](n)

is of the form 1⊗R2, where

R2 = 2P̄2 −
∞∑
j=1

(
P̄2ūj − 3(j + 2)ū1ūj+1 + (j + 3)ūj+2 − p̄(−1)

j+2

) ∂

∂ūj
.

(a′) The linear map R2 is injective.

(b) Similarly,

C[u](n) ⊗ C[ū](n−2) proj ◦L−2−→
2⊕
j=1

C[u, ū](n−j,n−j)

is of the form N2 ⊗ 1− 3N1 ⊗ ū1, where

N2 =
∑
j≥ 2

(j − 1)uj−2
∂

∂uj
.

(c) If uP ⊗ ūQ ∈ C[u, ū](n,n) such that ūQ lies in the image of R2, then

E
(
uP ūQ

)
= E

(
N2

(
uP
)
R
−1
2

(
ūQ
))
− 3E

(
N1

(
uP
)
ū1R

−1
2

(
ūQ
))
.

Proof. The proof of (a′) is the same as (b′) of Proposition 6.6. Parts (a) and (b) follow by the
formulas

π̄(L−2)
(
ρ2

0

)
= P̄2, ρ2

0π̄(L−2)(uj) =
j

2
ujP̄2 − 3juj−1ū1 + (j − 1)uj−2,

and

ρ2
0π(L−2)

(
u(z)

)
=

1

u(z)
−
(

1

z
− 3u1

)
u′(z)− 1

2
P2(zu′(z) + u(z)),

which we then expand to obtain ρ2
0π(L−2)(uj).

Applying infinitesimal invariance to L−2

(
ρ2

0u
P ūQ

)
gives part (c). �

Proposition 6.13. Fix n ≥ 2 and let Km = kernel(Rtm : C[u](n) → C[u](n−m)) for m = 1, 2.
Then

K1 ∩K2 = {0}

or

image(R1) + image(R2) = C[u](n).

Therefore, in principle, we can determine all moments by using only L−1 and L−2.
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Proof. Consider the cylic π-representation generated by ρn0 :

π
(
U(W)

)
ρn0 =

∞⊕
k=0

ρn−k0 C[u](k),

which is an irreducible Verma module. Therefore, the n-th graded component, C[u](n), has
a basis consisting of elements of the form

L−ij · · ·L−i1
(
ρn0
)
,

where 0 < i1 ≤ · · · ≤ ij and i1+· · ·+ij = n. The claim follows since U(
⊕

k≥1 CL−k) is generated
by L−1 and L−2. �

Consider uP ⊗ ūQ ∈ C[u](n) ⊗ C[ū](n). In principle, we can write

ūQ = R1(f̄1) +R2(f̄2)

for some polynomials f̄j ∈ C[ū](n−j). We can then compute

E
(
uP ūQ

)
= E

(
N1

(
uP
)
(f̄1 − 3ū1f̄2)

)
+ E

(
N2

(
uP
)
f̄2

)
.

The question now becomes how to divide ūQ into two pieces. In theory, this can be done using
the orthogonal decomposition

C[ū](n) = image(R1)⊕
(
image(R2)	 image(R1)

)
.

Remark 6.14. This gives a recursion relation for moments. The drawback is that we have to
find all of the moments at a given level (indexed by n, which involves u1, . . . , un) to proceed
to the next level. In implementing this procedure numerically (e.g. for the purpose of trying
to reconstruct the distribution for u1), we have found it convenient to not take the orthogonal
complement, i.e. to work with an overdetermined system of linear equations. This has the ad-
vantage of providing consistency checks for all of our calculations. However, because p(n) grows
quite rapidly, this is slow (As of this writing, we do not have a conjecture for the distribution
of u1).

6.4 Uniqueness of Werner’s measures

To close this section, we will now give an alternate proof of the uniqueness of Werner’s family
of measures (when ν0 is normalized to be a probability measure). Our statement is marginally
stronger than Werner’s, in that we only need to assume the measures are locally finite, i.e. 0 <
µ0({a < |z| < A}) < ∞ for some finite 0 < a < A < ∞ (this is implied by the nontriviality
condition (1.1), but not vice versa).

Theorem 6.15. If there exists a family of locally finite measures {µS} on self-avoiding loops
on Riemann surfaces which satisfies conformal restriction, then this family is unique up to
multiplication by an overall positive constant.

Proof. We first claim that µ0 is uniquely determined (up to a constant which we can normalize).
Conformal invariance of µ0 implies that there is a factorization as in Proposition 2.4:

dµ0(γ) = dν0(u)× dρ∞
ρ∞

,

where here we view dν0 as a measure on u. Local finiteness implies that ν0 is finite (see the
proof of (b) of Proposition 2.1), and hence we can normalize it to be a probability measure. The
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measure ν0 is completely determined by the joint distributions of u1, . . . , uN , N ≥ 1. The uj
are bounded, hence these distributions are determined by their joint moments. Finally we have
shown, using only infinitesimal conformal invariance (which depends on the conformal restriction
property, and not any specific features of Werner’s construction), that the moments for these
distributions are (in principle) computable. This determines µ0.

The proof that µ0 determines µS for all S basically follows from the argument given in
Section 6.1 of [17]. However there is a slight flaw in that argument. It is not quite the case that
“The family of events of the type

AD = {γ : γ ⊂ D and goes around the hole in D},

when D varies in the family of annular regions in S is stable under finite intersections”. For
example in the plane the intersection of the two annuli A1 := ∆ \ {|z| < 1/8} and A2 :=
∆ \ {|z − 1/2| < 1/8} is a pair of pants; there does not exist an annulus inside of this pair
of pants which contains all the loops which go around both holes. So the argument must be
modified (this kind of argument is also used in the earlier proof of Lemma 4 of [17], and in that
context it is valid, because 0 is always assumed to be in the hole of the allowed annuli).

Given knowledge of µ0, for any proper open subset S of the plane, and for any nontrivial
free homotopy class C ⊂ Loop(S), µS(C) is uniquely determined; this follows from conformal
restriction, because we can assume S ⊂ C \ {0} and all the loops in C go around zero.

Suppose S is a general Riemann surface. Consider the family of events C = CD, where C is
a nontrivial free homotopy class of loops in an open subset D ⊂ S such that D is conformally
equivalent to a proper open subset of C. We claim this family is stable under finite intersections.
Clearly D1 ∩D2 is conformally equivalent to a proper open subset of C. The main point is to
show that C1 ∩C2 determines a unique free homotopy class in D1 ∩D2. This topological fact is
probably well-known, but we will give a proof.

Suppose that we are given a fixed conformal equivalence of D with a proper open subset
of C, i : D → C, and a free homotopy class C ⊂ Loop(D). If γ ∈ Loop(D), then (by the Jordan
curve theorem applied to i(γ)) the complement of i(D) is divided into an inside, InD(γ), and an
outside, OutD(γ) (which contains ∞, i.e. large z).

Lemma 6.16. If γ1 ∈ CD, then CD is determined by InD(γ1), i.e. if γ2 ∈ Loop(D), then
γ2 ∈ CD if and only if InD(γ2) = InD(γ1).

Proof. This is a topological claim, so in a standard way we can suppose loops are smooth,
and intersections are transverse. Suppose H(s, t) is a homotopy (with Image(H(·, 0)) = γ1, and
Image(H(·, 1)) = γ2). For 0 < t < 1, H(·, t) is not necessarily simple, but we can nonetheless
talk about InD(H(·, t)), by using the inner boundary. This set, InD(H(·, t)), is independent of t,
by continuity, and this implies InD(γ2) = InD(γ1).

Now consider the converse. Let U
(j))
± denote the bounded and unbounded components for

C \ γj , respectively. Then U
(1)
+ ∩ U (2)

+ and {∞} ∪ (U
(1)
− ∩ U

(2)
+ ) are open contractible sets (for

example U
(1)
+ ∩U

(2)
+ is the bounded component for the inner boundary of γ1∪γ2). The complement

is a closed region with a boundary composed of the inner and outer boundaries for γ1 ∪ γ2, and
it is homotopic to a annulus with boundary (for curves which intersect transversely, it is an
annulus which is pinched at the points of intersection of the γi). This annular region is entirely
contained in D, and hence γ1 and γ2 are homotopic in D. �

We now use this to show that C1 ∩ C2 determines a unique free homotopy class in D1 ∩D2.
Fix conformal embeddings ij : Dj → C, and use the restriction of i1 to embed D1∩D2. Suppose
that γ1, γ2 ∈ C1 ∩ C2. Then the Lemma implies that InDk(γj) does not depend on j. But then
InD1∩D2(γj) is also independent of j, and hence by the Lemma, γ1 and γ2 are homotopic in
D1 ∩D2.
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This now implies that C1 ∩ C2 determines a unique free homotopy class in D1 ∩ D2. This
class is clearly nontrivial, because its image in Dk is nontrivial, k = 1, 2. This now implies that
the set of events CD is stable under finite intersections. Now the argument in Section 6.1 of [17]
implies µS is uniquely determined. �

7 The diagonal distribution

To determine the joint distribution for (ρ0, ρ∞), Proposition 2.1 implies that it suffices to
determine the distribution for H = − log(a) ≥ 0, which by part (e) of Proposition 2.1 is a kind
of height function for{

σ ∈ Homeo
(
S1
)

: ∃ unique welding σ = lau
}
.

Conjecture 7.1. For some β0 <
5π2

4 , the ν0 distribution for a is given by

ν0({σ : exp(−x) ≤ a(σ) ≤ 1}) = exp(−β0/x), x > 0.

Equivalently the Laplace transform∫
aλdν0(σ) =

∫ ∞
x=0

aλd exp(−β0/x) = 2
√
λβ0K1

(
2
√
λβ0

)
(7.1)

for λ > 0, where K1 is a modified Bessel function.

We will first explain how this conjecture is related to a remarkable calculation of Werner in
Section 7 of [17]. We will then present some calculations which are possibly relevant to a proof,
and incidentally give an estimate for Werner’s constant. Finally we will briefly indicate how the
conjecture naturally generalizes to the deformation of Werner’s measure considered in [13].

7.1 A formula of Werner

As in Section 7 of [17], consider the function

F (ρ) := µ
(

Loop1(A)
)
,

where A is a finite type annulus with modulus ρ = ρ(A), i.e. ρ > 0 is the unique number such
that A is conformally equivalent to

{1 < |z| < eρ}.

Cardy (see [6]) has conjectured an exact formula

F (ρ) = 6π

∑
k∈Z

(−1)k−1kq3k2/2−k+1/8

∞∏
k=1

(1− qk)
, q = exp

(
−2π2/ρ

)
. (7.2)

As we will explain below in more detail

Loop1
({

1 < |z| < eρ
})
⊂
{

1 ≤ ρ0 ≤ ρ∞ ≤ eρ
}
⊂ Loop1

({
1

4
< |z| < 4eρ

})
(7.3)

and as a consequence

F (ρ) ≤
∫ ρ

0
ν0

(
e−x ≤ a ≤ 1

)
dx ≤ F (log(16) + ρ). (7.4)
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This incidentally explains the constant 6π in (7.2), which ensures that the derivative of F is
asymptotically one, or equivalently that ν0 is a probability measure.

Werner shows that F (ρ) is asymptotic to const · exp
(
−β
ρ

)
as ρ → 0, where β = 5π2

4 ; see
Proposition 18 of [17]. This leads to the upper bound on β0 in our statement of the diagonal
distribution conjecture (if Cardy’s conjecture is correct, then (7.4) implies sharper upper and
lower bounds for β0).

Lemma 7.2. Fix x > 0. If γ ∈ Loop1({1 < |z| < ex}), then

1 ≤ ρ0(γ) ≤ ρ∞(γ) ≤ ex.

Proof. The Cauchy integral formula implies, for sufficiently smooth γ,

1

ρ0
=
(
φ−1

+

)′
(0) =

1!

2πi

∫
γ

φ−1
+ (t)

t2
dt.

Since γ is outside the unit disk and φ−1
+ : U+ → ∆. This implies

1

ρ0
≤ length(γ)

2π
≤ 1.

This implies the first inequality. The last inequality also follows from this.

We noted previously that the equality

a2 =
ρ2

0

ρ2
∞

=

1−
∞∑
m=1

(m− 1)|bm|2

1 +
∞∑
n=1

(n+ 1)|un|2

implies a ≤ 1, i.e. ρ0 ≤ ρ∞. �

Lemma 7.3.

(a)

µ0

{
γ : 1 ≤ ρ0(γ) ≤ ρ∞(γ) ≤ ex

}
=

∫ x

y=0
ν0

{
e−y ≤ a ≤ 1

}
dy ≤ xν0

{
e−x ≤ a ≤ 1

}
.

(b) ∫ x

0
e−β0/ydy = xe−β0/x − Γ

(
0,
β0

x

)
= xe−β0/x − Ei

(
1,
β0

x

)
= x− β0 log(x) + β0(log(β0) + γ − 1)− 1

2
β2

0x
−1 + · · · .

(c) There is an asymptotic expansion∫ x

0
e−β0/ydy =

x2

β0
e−β0/x

∞∑
n=0

(−1)nn!

(
x

β0

)n
=
x2

β0
e−β0/x

(
1− x

β0
+ 2

x2

β2
0

− · · ·
)

as x→ 0.
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Proof. (a) Using the factorization dµ0 = dρ∞
ρ∞
× dν0,

µ0

{
γ : 1 ≤ ρ0(γ) ≤ ρ∞(γ) ≤ ex

}
= µ0

{
1

ρ∞
≤ a ≤ 1, 1 ≤ ρ∞ ≤ ex

}
=

∫ ex

ρ∞=1
ν0

{
1

ρ∞
≤ a ≤ 1

}
dρ∞
ρ∞

.

By making the change of variables ρ∞ = ey, we obtain the expression in part (a).
(b) and (c) are standard facts. For example there is a Laurent expansion

e−β0/x = 1− β0

x
+

1

2

(
β0

x

)2

− · · · , 0 < |x| <∞.

Therefore there is an expansion∫ x

0
e−β0/ydy = x− β0 log(x) + c0 −

1

2
β2

0x
−1 +

β3
0

3!2
x−2 − · · ·

− (−1)n
1

n!(n− 1)
βn0

1

xn−1
− · · · ,

where the divergence of the logarithm and the Laurent expansion at x = 0 perfectly cancel,
allowing us to figure out c0. �

Corollary 7.4.

µ0

(
Loop1

({
1 < |z| < eρ

}))
≤ ρν0

{
e−ρ ≤ a ≤ 1

}
.

Proof. This follows from Lemma 7.2 and (a) of Lemma 7.3. �

Here is another approach, although not quite as sharp:

Loop1
({

1 < |z| < eρ
})
⊂ Loop1

({
|z| < eρ

})
\ Loop(∆).

Werner’s formula for the measure of the latter set is cWρ, where cW is Werner’s constant (see
below).

7.2 Werner’s constant

Recall that we have normalized Werner’s family of measures by assuming that ν0 is a probability
measure. We let cW denote the constant such that if γ is a loop which surrounds ∆,

µ0

(
Loop1(U+ \ {0}) \ Loop(∆)

)
= cW log(ρ0(γ)).

Proposition 7.5. cW ≥ 1.

Proof. On the one hand

Loop1
({

1 < |z| < eρ
})
⊂ Loop1

({
|z| < eρ

})
\ Loop(∆).

Therefore by Werner’s formula for the measure of the latter set,

F (ρ) ≤ cWρ.

On the other hand

Loop1
({

1 < |z| < eρ
})
⊂
{

1 ≤ ρ0 ≤ ρ∞ ≤ eρ
}
⊂ Loop1

({
1

4
< |z| < 4eρ

})
,
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where the last inclusion uses Koebe’s quarter theorem. Therefore

F (ρ) ≤
∫ ρ

0
ν0

(
e−x ≤ a ≤ 1

)
dx ≤ F (log(16) + ρ).

Because

ν0

(
e−x ≤ a ≤ 1

)
↑ 1 as x ↑ 1

it follows that F (ρ) behaves like a linear function with slope one for ρ � 1. This behavior is
compatible with the estimate above using Werner’s formula if and only if cW ≥ 1. This implies
the proposition. �

7.3 Some ideas

The conjectural Laplace transform (7.1) satisfies the ODE

λf ′′(λ)− β0f(λ) = 0,

Thus we need to show that∫ (
λ log(a)2 − β0

)
aλdν0(σ) = 0, λ > 0

for some constant β0. Roughly speaking, we are trying to calculate the second moment for the
distribution of H = − log(a). To calculate the second moment for a standard normal complex
variable, one can apply ∂∂̄ to exp(−|z|2/2) and use infinitesimal invariance of the background
Lebesgue measure; our strategy is to do the same with the stress tensor T (t) in place of ∂, aλ

in place of the Gaussian, and Werner’s measure in place of Lebesgue measure.

We will now list a number of formulas which are hopefully useful.

Lemma 7.6.

(a) For n > 0

LnL−na
λ = L−nLna

λ =
λ2

4
Pn(l1, . . . , ln)Pn(u1, . . . , un)aλ−n − nλaλ.

(b) For m > n ≥ 0

LmL−na
λ =

λ2

4
Pm(l1, . . . , lm)Pn(u1, . . . , un)aλ

ρm∞
ρn0
.

(c)

−→
L n

−→
L −na

λ =
−→
L −n

−→
L na

λ = λ2 Re(Pn(l1, . . . , ln)) Re(Pn(u1, . . . , un))aλ−n − 2nλaλ

= λ2 Re
(
Pn
(
u1

(
σ−1

)
, . . . , un

(
σ−1

)))
Re(Pn(u1, . . . , un))aλ−n − 2nλaλ.

(d) For m > n ≥ 0

−→
L m

−→
L −na

λ = λ2 Re(Pm(l1, . . . , lm)) Re(Pn(u1, . . . , un))aλ
ρm∞
ρn0
.
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Proof. (a) The fact that Ln and L−n commute when acting on aλ follows from the fact that
L0a = 0.

Using L−n(ρ∞) = 0 and (d) of Proposition 4.1,

L−na
λ = λaλ−1L−n(ρ0)

1

ρ∞
=

λ

2ρn0
Pn(u))aλ,

where we have abbreviated Pn(u1, . . . , un) = Pn(u). Therefore

LnL−na
λ =

λ

2ρn0

(
λaλ−1ρ0Ln

(
1

ρ∞

)
Pn(u1, . . . , un) + aλLn(Pn(u1, . . . , un))

)
.

Recall that Pn(u1, . . . , un) = −2nun + function(u1, . . . , un−1) and Ln(un) = ρn0 . This implies

LnL−na
λ =

λ

2ρn0

(
λaλ−1ρ0

1

2
(

1

ρ∞
)−n+1Pn(l)Pn(u) + aλ(−2nρn0 )

)
This simplifies to (a).

(b) This follows in a similar way, using the fact that Lm kills Pn(u1, . . . , un).
(c) and (d) are proven in a similar way, and will not be used. �

Recall that

(
∂ log

(
φ−1

+

))2
=

( ∞∑
n=0

Pn(φ+)tn

)(
dt

t

)2

(this is a holomorphic quadratic differential which is well-defined in U+) and

(
∂ log

(
φ−1
−
))2

=

( ∞∑
n=0

Pn(φ−)t−n

)(
dt

t

)2

(this is a holomorphic quadratic differential which is well-defined in U−; note that(
dt

t

)2

=

(
dt−1

t−1

)2

.

The fact that these two quadratic differentials do not have a common domain, or at the very
best, are possibly defined on the rough loop γ, is a crucial point.

Proposition 7.7.

E
((
λPn(φ+)Pn(φ−)− 4n

)
aλ
)

= E
((
λPn(u)Pn(l)a−n − 4n

)
aλ
)

= 0.

Proof. This follows from the Lemma and infinitesimal conformal invariance. �

The basic question now is whether there is a constant β0 such that λ log(a)2 − β0 is a limit,
in an appropriate measure theoretic sense relative to ν0, of linear combinations of the functions
λPn(φ+)Pn(φ−)− 2n, as n varies.

Question 7.8. Do there exist constants cn such that

N∑
n=1

cnPn(u)Pn(l)a−n → log(a)2 as N →∞

in some measure-theoretic sense relative to ν0?
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This is definitely false for all σ. To see this, suppose that

σ = φN (wN , z) = z

(
1 + wNz

−N)1/N(
1 + wNzN

)1/N .

In this case

u(z) = z
(
1 + wNz

N
)−1/N

,
U ′(t)

U(t)
=

1

t

1

1− wN tN

and

(∂ logU(t))2 =
(
1 + 2wN t

N + 3
(
wN t

N
)2

+ 4
(
wN t

N
)3

+ · · ·
)(dt

t

)2

.

Thus for this particular u

Pn(u) = (m+ 1)wmN = −Pn(l)∗, n = mN

and zero otherwise. Also

l(t) = t
(
1 + w̄N t

−N), ∂ log(l(t)) =
1

t
(
1 + w̄N t−N

)dt =
tN−1

tN + w̄N
dt,

a =
(
1− |wN |2

)1/N
,

so that

log(a)2 =
1

N2
log
(
1− |wN |2

)2
.

If we actually have an identity, then for each N = 1, 2, . . .

1

N2
log
(
1− |wN |2

)2
=

∞∑
m=0

cmN
(m+ 1)2|wN |2m(

1− |wN |2
)m .

If we set x = |wN |2, then this is equivalent to

log(1− x)2 =
∞∑
m=0

N2cmN (m+ 1)2

(
x

1− x

)m
.

This is clearly impossible: we cannot consistently solve for the constants. Furthermore the
radius of convergence for the l.h.s. is 1, and the radius of convergence for the r.h.s. is 1

2 .
A more promising approach seems to be to use the stress-energy tensor. Here is one heuristic

calculation:

E
(
T (t)T (s)aλ

)
=
∑
n,m

E
(
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(
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.

We now need to apply some kind of pairing for quadratic differentials, and we are stymied at
this point.
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7.4 KS conjecture and diagonal distribution

In [13] Kontsevich and Suhov show that for each Riemann surface, there exists a continuous
positive determinant line bundle Det→ Loop(S), and these line bundles have a natural restric-
tion property. They conjecture that for each “central charge” c (in some range), there exists
a family of measures µS having values in the positive line bundle Detc and satisfying a confor-
mal restriction property. In the case c = 0, this family is the family of measures constructed by
Werner.

There is a canonical trivialization of the determinant line bundle in genus zero, so that the
conjectured KS measure can be viewed as a scalar measure which is invariant with respect to
global conformal transformations; see Section 2.5 of [13]. We denote this measure restricted to
Loop1(C \ {0}) by µc; properly normalized, this is the Werner measure when c = 0.

Lemma 7.9. Assume that µc exists. Then

(a) The distributions for ρ0 and ρ∞ are scale invariant.

(b)

d(W∗µ)(σ, ρ∞) = dνc(σ)× dρ∞
ρ∞

.

(c) The measure dνc(σ) is inversion invariant and invariant with respect to conjugation by
C : z 7→ z∗.

(d) The measure dνc(σ) is supported on σ having triangular factorization σ = lau, i.e. m = 1.

(e) If in addition νc is finite, and hence can be normalized to be a probability measure, then
there is an inequality generalizing (7.4),

Fc(ρ) ≤
∫ ρ

0
νc
(
e−x ≤ a ≤ 1

)
dx ≤ Fc(log(16) + ρ),

where Fc(ρ) := µc(Loop1(A)), where A is a finite type annulus with modulus ρ = ρ(A).

This is a rigorous result (contingent on the existence of µc), because (a)–(d) use only global
conformal invariance of µc, and (e) only depends on (7.3).

There is a natural conjecture for the diagonal distribution (there may be a conjecture for Fc(ρ)
which is implicit in [6], but we will not pursue this).

Conjecture 7.10. The νc distribution for H = − log(a) is the inverse gamma distribution with
parameters α = 1 − c and some βc > 0 (possibly proportional to h+(c), the larger value of two
values of the conformal anomaly h corresponding to c < 1). In other words we are conjecturing
that

νc({σ : exp(−x) ≤ a(σ) ≤ 1}) =
Γ(α, βc/x)

Γ(α)
, x > 0

and the Laplace transform∫
aλdνc(σ) =

2(βcλ)
α
2

Γ(α)
Kα

(√
4βcλ

)
,

where Kα is a modified Bessel function. This function of λ satisfies the differential equation

λf ′′(λ) + cf ′(λ)− βcf(λ) = 0.
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This differential equation obviously makes sense for values of the parameters which are not
necessarily positive. But for example if c = 1, i.e. α = 0, then the particular solution we are
considering, K0, is not finite at λ = 0, so that the probabilistic interpretation is lost (this is
obvious by noting that the pdf is not integrable at ∞ when α = 0). In terms of our conjecture
this means that when c = 1, the σ distribution for the conjectured Kontsevich–Suhov measure
is not finite, according to us.

To motivate this, in a heuristic way, we imagine that µc is absolutely continuous with respect
to Werner’s measure µ0: µc = δcdµ0. We then apply infinitesimal invariance in the following
way. Suppose that n > 0. Then

Ln
(
L−n

(
aλ
)
δcδ(ρ0 = 1)dµ0

)
=
((
LnL−n

(
aλ
))
δc + L−n

(
aλ
)
Ln
(
δc
))
δ(ρ0 = 1)dµ0

=
((
λ2Pn(u)Pn(l)a−n − 2nλ

)
+ λPn(l)ρn∞cQn(u, l)

)
δ(ρ0 = 1)aλδcdµc,

where we have tentatively written

Ln(δc) = cQn(u, l)δc.

This should rigorously be expressed in terms of divergences, as proposed in Section 2.5.2 of [13].
From this, by dividing by λ, we can deduce that∫ (

λPn(u)Pn(l)a−n + cPn(l)Qn(u, l)ρn∞ − 2n
)
aλdνc = 0.

Now we would have to take linear combinations and limits, to obtain log(a)2 from the first term,
log(a) from the second term (involving c), and a constant βc from the third term.

A The Vietoris topology

Suppose that S is a topological space. The Vietoris topology on Comp(S) has a base consisting
of sets of the form{

K ∈ Comp(S) : K ⊂ U,K ∩ Ui 6= φ, i = 1, . . . , n
}
,

where U,U1, . . . , Un are open subsets of S. Given K0 ∈ Comp(S), suppose we tightly cover K0

with open sets Ui, 1 ≤ i ≤ n, and let U = ∪iUi. Then “K is close to K0” means that (i) K ⊂ U ,
so every point in K is close to a point in K0, and (ii) for each point x0 ∈ K0, x0 ∈ Ui, for some i,
hence K ∩Ui 6= ∅ implies x0 is close to some point in K. If S is metrizable, with metric d, then
the Vietoris topology is compatible with the associated Hausdorff metric topology on Comp(S),
where the Hausdorff metric is given by

δ(K1,K2) = max
{

sup
p1∈K1

(d(p1,K2)), sup
p2∈K2

(d(K1, p2))
}
.

For most topological properties τ , “S is τ” if and only if “Comp(S) is τ” (see Section 4 of [14]).
In particular if S is second countable and locally compact, then Comp(S) is second countable
and locally compact.

Suppose that S is a Riemann surface with a fixed compatible complete metric. The associated
Hausdorff metric on Loop(S) is obviously not complete, since for example a small circle can pinch
down to a point. Does there exist a complete separable metric on Loop(S) compatible with the
Vietoris topology?
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