|
SIGMA 10 (2014), 076, 18 pages arXiv:1307.4850
https://doi.org/10.3842/SIGMA.2014.076
Contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rieffel
Quantum Isometry Groups of Noncommutative Manifolds Obtained by Deformation Using Dual Unitary 2-Cocycles
Debashish Goswami and Soumalya Joardar
Indian Statistical Institute, 203, B.T. Road, Kolkata 700108, India
Received January 29, 2014, in final form July 11, 2014; Published online July 17, 2014
Abstract
It is proved that the (volume and orientation-preserving) quantum isometry group of a spectral triple obtained by deformation by some dual unitary 2-cocycle is isomorphic with a similar twist-deformation of the quantum isometry group of the original (undeformed) spectral triple. This result generalizes similar work by Bhowmick and Goswami for Rieffel-deformed spectral triples in [Comm. Math. Phys. 285 (2009), 421-444].
Key words:
cocycle twist; quantum isometry group; Rieffel deformation; spectral triple.
pdf (419 kb)
tex (27 kb)
References
-
Banica T., Quantum automorphism groups of homogeneous graphs, J. Funct. Anal. 224 (2005), 243-280, math.QA/0311402.
-
Banica T., Goswami D., Quantum isometries and noncommutative spheres, Comm. Math. Phys. 298 (2010), 343-356, arXiv:0905.3814.
-
Bhowmick J., Goswami D., Quantum group of orientation-preserving Riemannian isometries, J. Funct. Anal. 257 (2009), 2530-2572, arXiv:0806.3687.
-
Bhowmick J., Goswami D., Quantum isometry groups: examples and computations, Comm. Math. Phys. 285 (2009), 421-444, arXiv:0707.2648.
-
Bhowmick J., Goswami D., Skalski A., Quantum isometry groups of 0-dimensional manifolds, Trans. Amer. Math. Soc. 363 (2011), 901-921, arXiv:0807.4288.
-
Bichon J., Quantum automorphism groups of finite graphs, Proc. Amer. Math. Soc. 131 (2003), 665-673, math.QA/9902029.
-
Bichon J., De Rijdt A., Vaes S., Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), 703-728, math.OA/0502018.
-
Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
-
Das B., Goswami D., Joardar S., Rigidity of action of compact quantum groups on compact, connected manifolds, arXiv:1309.1294.
-
Donin J., Shnider S., Deformation of certain quadratic algebras and the corresponding quantum semigroups, Israel J. Math. 104 (1998), 285-300.
-
Goswami D., Twisted entire cyclic cohomology, J-L-O cocycles and equivariant spectral triples, Rev. Math. Phys. 16 (2004), 583-602, math-ph/0204010.
-
Goswami D., Quantum group of isometries in classical and noncommutative geometry, Comm. Math. Phys. 285 (2009), 141-160, arXiv:0704.0041.
-
Kustermans J., Locally compact quantum groups in the universal setting, Internat. J. Math. 12 (2001), 289-338, math.OA/9902015.
-
Kustermans J., Vaes S., Locally compact quantum groups in the von Neumann algebraic setting, Math. Scand. 92 (2003), 68-92, math.OA/0005219.
-
Lance E.C., Hilbert $C^*$-modules. A toolkit for operator algebraists, London Mathematical Society Lecture Note Series, Vol. 210, Cambridge University Press, Cambridge, 1995.
-
Maes A., Van Daele A., Notes on compact quantum groups, Nieuw Arch. Wisk. (4) 16 (1998), 73-112, math.FA/9803122.
-
Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
-
Neshveyev S., Tuset L., The Dirac operator on compact quantum groups, J. Reine Angew. Math. 641 (2010), 1-20, math.OA/0703161.
-
Neshveyev S., Tuset L., Deformation of $C^\ast$-algebras by cocycles on locally compact quantum groups, Adv. Math. 254 (2014), 454-496, arXiv:1301.4897.
-
Podleś P., Symmetries of quantum spaces. Subgroups and quotient spaces of quantum ${\rm SU}(2)$ and ${\rm SO}(3)$ groups, Comm. Math. Phys. 170 (1995), 1-20, hep-th/9402069.
-
Rieffel M.A., van Daele A., A bounded operator approach to Tomita-Takesaki theory, Pacific J. Math. 69 (1977), 187-221.
-
Sołtan P.M., On actions of compact quantum groups, Illinois J. Math. 55 (2011), 953-962, arXiv:1003.5526.
-
Takesaki M., Theory of operator algebras. I, Springer-Verlag, New York - Heidelberg, 1979.
-
Vaes S., The unitary implementation of a locally compact quantum group action, J. Funct. Anal. 180 (2001), 426-480, math/0005262.
-
Van Daele A., Multiplier Hopf algebras, Trans. Amer. Math. Soc. 342 (1994), 917-932.
-
Wang S., Deformations of compact quantum groups via Rieffel's quantization, Comm. Math. Phys. 178 (1996), 747-764.
-
Wang S., Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), 195-211, math.OA/9807091.
-
Woronowicz S.L., Compact quantum groups, in Symétries Quantiques (Les Houches, 1995), North-Holland, Amsterdam, 1998, 845-884.
|
|