|
SIGMA 10 (2014), 069, 15 pages arXiv:1310.2006
https://doi.org/10.3842/SIGMA.2014.069
Special Solutions and Linear Monodromy for the Two-Dimensional Degenerate Garnier System G(1112)
Kazuo Kaneko
Seki Kowa Institute of Mathematics, Yokkaichi University, Kayaucho, Yokkaichi, Mie, 512-8512, Japan
Received October 24, 2013, in final form June 14, 2014; Published online July 05, 2014
Abstract
We have classified special solutions around the origin for the two-dimensional degenerate Garnier system G(1112) with generic values of complex parameters, whose linear monodromy can be calculated explicitly.
Key words:
two-dimensional degenerate Garnier system; monodromy data.
pdf (349 kb)
tex (16 kb)
References
-
Appell P., Sur les polynômes se rattachant à l'équation différentielle $y''=6y^2+x$, Bull. Soc. Math. France 45 (1917), 150-153.
-
Bolibruch A.A., On isomonodromic confluences of Fuchsian singularities, Proc. Steklov Inst. Math. 221 (1998), 117-132.
-
Briot C., Bouquet J.C., Recherches sur les propriétés des fonctions définies par des équations différentielles, J. de l'Ecole Polytechnique 21 (1856), 133-198.
-
Garnier R., Étude de l'intégrale générale de l'équation VI de M. Painlevé dans le voisinage de ses singularités transcendantes, Ann. Sci. École Norm. Sup. (3) 34 (1917), 239-353.
-
Gérard R., Sibuya Y., Étude de certains systèmes de Pfaff au voisinage d'une singularité, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), A57-A60.
-
Heading J., The Stokes phenomenon and the Whittaker function, J. London Math. Soc. 37 (1962), 195-208.
-
Iwasaki K., Kimura H., Shimomura S., Yoshida M., From Gauss to Painlevé. A modern theory of special functions, Aspects of Mathematics, Vol. E16, Friedr. Vieweg & Sohn, Braunschweig, 1991.
-
Jimbo M., Monodromy problem and the boundary condition for some Painlevé equations, Publ. Res. Inst. Math. Sci. 18 (1982), 1137-1161.
-
Kaneko K., A new solution of the fourth Painlevé equation with a solvable monodromy, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), 75-79.
-
Kaneko K., Local expansion of Painlevé VI transcendents around a fixed singularity, J. Math. Phys. 50 (2009), 013531, 24 pages.
-
Kaneko K., Ohyama Y., Fifth Painlevé transcendents which are analytic at the origin, Funkcial. Ekvac. 50 (2007), 187-212.
-
Kaneko K., Ohyama Y., Meromorphic Painlevé transcendents at a fixed singularity, Math. Nachr. 286 (2013), 861-875.
-
Kimura H., The degeneration of the two-dimensional Garnier system and the polynomial Hamiltonian structure, Ann. Mat. Pura Appl. (4) 155 (1989), 25-74.
-
Kitaev A.V., Symmetric solutions for the first and the second Painlevé equation, J. Math. Sci. 73 (1995), 494-499.
-
Kohno M., Global analysis in linear differential equations, Mathematics and its Applications, Vol. 471, Kluwer Academic Publishers, Dordrecht, 1999.
-
Okamoto K., Isomonodromic deformation and Painlevé equations, and the Garnier system, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 33 (1986), 575-618.
|
|