|
SIGMA 10 (2014), 065, 16 pages arXiv:1312.4018
https://doi.org/10.3842/SIGMA.2014.065
Bicrossed Products, Matched Pair Deformations and the Factorization Index for Lie Algebras
Ana-Loredana Agore a, b and Gigel Militaru c
a) Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
b) Department of Applied Mathematics, Bucharest University of Economic Studies, Piata Romana 6, RO-010374 Bucharest 1, Romania
c) Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei 14, RO-010014 Bucharest 1, Romania
Received January 20, 2014, in final form June 10, 2014; Published online June 16, 2014
Abstract
For a perfect Lie algebra $\mathfrak{h}$ we classify all Lie algebras containing $\mathfrak{h}$ as a subalgebra of codimension $1$. The automorphism groups of such Lie algebras are fully determined as subgroups of the semidirect product $\mathfrak{h} \ltimes (k^* \times {\rm Aut}_{\rm Lie} (\mathfrak{h}))$. In the non-perfect case the classification of these Lie algebras is a difficult task. Let $\mathfrak{l} (2n+1, k)$ be the Lie algebra with the bracket $[E_i, G] = E_i$, $[G, F_i] = F_i$, for all $i = 1, \dots, n$. We explicitly describe all Lie algebras containing $\mathfrak{l} (2n+1, k)$ as a subalgebra of codimension $1$ by computing all possible bicrossed products $k \bowtie \mathfrak{l} (2n+1, k)$. They are parameterized by a set of matrices ${\rm M}_n (k)^4 \times k^{2n+2}$ which are explicitly determined. Several matched pair deformations of $\mathfrak{l} (2n+1, k)$ are described in order to compute the factorization index of some extensions of the type $k \subset k \bowtie \mathfrak{l} (2n+1, k)$. We provide an example of such extension having an infinite factorization index.
Key words:
matched pairs of Lie algebras; bicrossed products; factorization index.
pdf (408 kb)
tex (24 kb)
References
-
Agore A.L., Bontea C.G., Militaru G., Classifying bicrossed products of Hopf algebras, Algebr. Represent. Theory 17 (2014), 227-264, arXiv:1205.6110.
-
Agore A.L., Militaru G., Classifying complements for groups. Applications, arXiv:1204.1805.
-
Agore A.L., Militaru G., Classifying complements for Hopf algebras and Lie algebras, J. Algebra 391 (2013), 193-208, arXiv:1205.6564.
-
Agore A.L., Militaru G., Extending structures for Lie algebras, Monatsh. Math. 174 (2014), 169-193, arXiv:1301.5442.
-
Andrada A., Barberis M.L., Dotti I.G., Ovando G.P., Product structures on four dimensional solvable Lie algebras, Homology Homotopy Appl. 7 (2005), 9-37, math.RA/0402234.
-
Andrada A., Salamon S., Complex product structures on Lie algebras, Forum Math. 17 (2005), 261-295, math.DG/0305102.
-
Benayadi S., Structure of perfect Lie algebras without center and outer derivations, Ann. Fac. Sci. Toulouse Math. 5 (1996), 203-231.
-
de Graaf W.A., Classification of solvable Lie algebras, Experiment. Math. 14 (2005), 15-25, math.RA/0404071.
-
Erdmann K., Wildon M.J., Introduction to Lie algebras, Springer Undergraduate Mathematics Series, Springer-Verlag London, Ltd., London, 2006.
-
Figueroa-O'Farrill J.M., Stanciu S., On the structure of symmetric self-dual Lie algebras, J. Math. Phys. 37 (1996), 4121-4134, hep-th/9506152.
-
Fisher D.J., Gray R.J., Hydon P.E., Automorphisms of real Lie algebras of dimension five or less, J. Phys. A: Math. Theor. 46 (2013), 225204, 18 pages, arXiv:1303.3376.
-
Hofmann K.H., Lie algebras with subalgebras of co-dimension one, Illinois J. Math. 9 (1965), 636-643.
-
Humphreys J.E., Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York - Berlin, 1972.
-
Jiang C.P., Meng D.J., Zhang S.Q., Some complete Lie algebras, J. Algebra 186 (1996), 807-817.
-
Lu J.H., Weinstein A., Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom. 31 (1990), 501-526.
-
Majid S., Physics for algebraists: noncommutative and noncocommutative Hopf algebras by a bicrossproduct construction, J. Algebra 130 (1990), 17-64.
-
Majid S., Foundations of quantum group theory, Cambridge University Press, Cambridge, 1995.
-
Medina A., Revoy P., Algèbres de Lie et produit scalaire invariant, Ann. Sci. École Norm. Sup. 18 (1985), 553-561.
-
Michor P.W., Knit products of graded Lie algebras and groups, Rend. Circ. Mat. Palermo (2) Suppl. 22 (1990), 171-175, math.GR/9204220.
-
Pelc O., A new family of solvable self-dual Lie algebras, J. Math. Phys. 38 (1997), 3832-3840, physics/9709009.
-
Popovych R.O., Boyko V.M., Nesterenko M.O., Lutfullin M.W., Realizations of real low-dimensional Lie algebras, J. Phys. A: Math. Gen. 36 (2003), 7337-7360, math-ph/0301029.
-
Su Y., Zhu L., Derivation algebras of centerless perfect Lie algebras are complete, J. Algebra 285 (2005), 508-515, math.QA/0511550.
|
|