Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 060, 7 pages      arXiv:1402.3024      https://doi.org/10.3842/SIGMA.2014.060
Contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rieffel

Local Proof of Algebraic Characterization of Free Actions

Paul F. Baum a, b and Piotr M. Hajac b, c
a) Mathematics Department, McAllister Building, The Pennsylvania State University, University Park, PA 16802, USA
b) Instytut Matematyczny, Polska Akademia Nauk, ul. Śniadeckich 8, Warszawa, 00-656 Poland
c) Katedra Metod Matematycznych Fizyki, Uniwersytet Warszawski, ul. Hoża 74, 00-682 Warszawa, Poland

Received February 13, 2014, in final form May 21, 2014; Published online June 06, 2014

Abstract
Let $G$ be a compact Hausdorff topological group acting on a compact Hausdorff topological space $X$. Within the $C^{*}$-algebra $C(X)$ of all continuous complex-valued functions on $X$, there is the Peter-Weyl algebra $\mathcal{P}_G(X)$ which is the (purely algebraic) direct sum of the isotypical components for the action of $G$ on $C(X)$. We prove that the action of $G$ on $X$ is free if and only if the canonical map $\mathcal{P}_G(X)\otimes_{C(X/G)}\mathcal{P}_G(X)\to \mathcal{P}_G(X)\otimes\mathcal{O}(G)$ is bijective. Here both tensor products are purely algebraic, and $\mathcal{O}(G)$ denotes the Hopf algebra of ''polynomial'' functions on $G$.

Key words: compact group; free action; Peter-Weyl-Galois condition.

pdf (337 kb)   tex (10 kb)

References

  1. Baum P.F., De Commer K., Hajac P.M., Free actions of compact quantum groups on unital $C^{*}$-algebras, arXiv:1304.2812.
  2. Baum P.F., Hajac P.M., Matthes R., Szymański W., Noncommutative geometry approach to principal and associated bundles, in Quantum Symmetry in Noncommutative Geometry, to appear, math.DG/0701033.
  3. Brzeziński T., Hajac P.M., The Chern-Galois character, C. R. Math. Acad. Sci. Paris 338 (2004), 113-116, math.KT/0306436.
  4. Gleason A.M., Spaces with a compact Lie group of transformations, Proc. Amer. Math. Soc. 1 (1950), 35-43.
  5. Hajac P.M., Krähmer U., Matthes R., Zieliński B., Piecewise principal comodule algebras, J. Noncommut. Geom. 5 (2011), 591-614, arXiv:0707.1344.
  6. Loomis L.H., An introduction to abstract harmonic analysis, D. Van Nostrand Company, Inc., Toronto - New York - London, 1953.
  7. Mostow G.D., Cohomology of topological groups and solvmanifolds, Ann. of Math. 73 (1961), 20-48.
  8. Podleś P., Symmetries of quantum spaces. Subgroups and quotient spaces of quantum ${\rm SU}(2)$ and ${\rm SO}(3)$ groups, Comm. Math. Phys. 170 (1995), 1-20, hep-th/9402069.
  9. Schneider H.-J., Principal homogeneous spaces for arbitrary Hopf algebras, Israel J. Math. 72 (1990), 167-195.
  10. Sołtan P.M., On actions of compact quantum groups, Illinois J. Math. 55 (2011), 953-962, arXiv:1003.5526.


Previous article  Next article   Contents of Volume 10 (2014)