|
SIGMA 10 (2014), 054, 20 pages arXiv:1402.6184
https://doi.org/10.3842/SIGMA.2014.054
Contribution to the Special Issue on Deformations of Space-Time and its Symmetries
Two-Point Functions on Deformed Spacetime
Josip Trampetić a, b and Jiangyang You a
a) Rudjer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
b) Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München, Germany
Received February 24, 2014, in final form May 19, 2014; Published online May 29, 2014
Abstract
We present a review of the one-loop photon ($\Pi$) and neutrino ($\Sigma$) two-point functions in a covariant and deformed $\rm U(1)$ gauge-theory on the 4-dimensional noncommutative spaces, determined by a constant antisymmetric tensor $\theta^{\mu\nu}$, and by a parameter-space $(\kappa_f,\kappa_g)$, respectively. For the general fermion-photon $S_f(\kappa_f)$ and photon self-interaction $S_g(\kappa_g)$ the closed form results reveal two-point functions with all kind of pathological terms: the UV divergence, the quadratic UV/IR mixing terms as well as a logarithmic IR divergent term of the type $\ln(\mu^2(\theta p)^2)$. In addition, the photon-loop produces new tensor structures satisfying transversality condition by themselves. We show that the photon two-point function in the 4-dimensional Euclidean spacetime can be reduced to two finite terms by imposing a specific full rank of $\theta^{\mu\nu}$ and setting deformation parameters $(\kappa_f,\kappa_g)=(0,3)$. In this case the neutrino two-point function vanishes. Thus for a specific point $(0,3)$ in the parameter-space $(\kappa_f,\kappa_g)$, a covariant $\theta$-exact approach is able to produce a divergence-free result for the one-loop quantum corrections, having also both well-defined commutative limit and point-like limit of an extended object.
Key words:
non-commutative geometry; photon and neutrino physics; non-perturbative effects.
pdf (629 kb)
tex (103 kb)
References
-
Abel S., Chu C.-S., Goodsell M., Noncommutativity from the string perspective: modification of gravity at a mm without mm sized extra dimensions, J. High Energy Phys. 2006 (2006), no. 11, 058, 27 pages, hep-th/0606248.
-
Abel S.A., Jaeckel J., Khoze V.V., Ringwald A., Vacuum birefringence as a probe of Planck scale noncommutativity, J. High Energy Phys. 2006 (2006), no. 9, 074, 18 pages, hep-ph/0607188.
-
Alboteanu A., Ohl T., Rückl R., Probing the noncommutative standard model at hadron colliders, Phys. Rev. D 74 (2006), 096004, 9 pages, hep-ph/0608155.
-
Alboteanu A., Ohl T., Rückl R., Noncommutative standard model at $\mathcal{O}(\theta^2)$, Phys. Rev. D 76 (2007), 105018, 10 pages, arXiv:0707.3595.
-
Alboteanu A., Ohl T., Rückl R., The noncommutative standard model at colliders, Acta Phys. Polon. B 38 (2007), 3647-3651, arXiv:0709.2359.
-
Álvarez-Gaumé L., Vázquez-Mozo M.A., General properties of non-commutative field theories, Nuclear Phys. B 668 (2003), 293-321, hep-th/0305093.
-
Amelino-Camelia G., Ellis J., Mavromatos N.E., Nanopoulos D.V., Sarkar S., Tests of quantum gravity from observations of gamma-ray bursts, Nature 393 (1998), 763-765, astro-ph/9712103.
-
Arkani-Hamed N., Dimopoulos S., Dvali G., The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998), 263-272, hep-ph/9803315.
-
Aschieri P., Jurčo B., Schupp P., Wess J., Noncommutative GUTs, Standard Model and $C$, $P$, $T$, Nuclear Phys. B 651 (2003), 45-70, hep-th/0205214.
-
Banerjee R., Ghosh S., Seiberg-Witten map and the axial anomaly in non-commutative field theory, Phys. Lett. B 533 (2002), 162-167, hep-th/0110177.
-
Barnich G., Brandt F., Grigoriev M., Local BRST cohomology and Seiberg-Witten maps in noncommutative Yang-Mills theory, Nuclear Phys. B 677 (2004), 503-534, hep-th/0308092.
-
Behr W., Deshpande N., Duplančić G., Schupp P., Trampetić J., Wess J., The $Z \to \gamma \gamma, g g$ decays in the noncommutative standard model, Eur. Phys. J. C Part. Fields 29 (2003), 441-446, hep-ph/0202121.
-
Bichl A., Grimstrup J., Popp L., Schweda M., Grosse H., Wulkenhaar R., Renormalization of the noncommutative photon self-energy to all orders via Seiberg-Witten map, J. High Energy Phys. 2001 (2001), no. 6, 013, 15 pages, hep-th/0104097.
-
Bichl A.A., Grimstrup J.M., Popp L., Schweda M., Wulkenhaar R., Perturbative analysis of the Seiberg-Witten map, Internat. J. Modern Phys. A 17 (2002), 2219-2231, hep-th/0102044.
-
Bigatti D., Susskind L., Magnetic fields, branes, and noncommutative geometry, Phys. Rev. D 62 (2000), 066004, 6 pages, hep-th/9908056.
-
Blaschke D.N., A new approach to non-commutative ${\rm U}_\star(N)$ gauge fields, Europhys. Lett. 91 (2010), 11001, 6 pages, arXiv:1005.1578.
-
Blaschke D.N., Grosse H., Kronberger E., Schweda M., Wohlgenannt M., Loop calculations for the non-commutative ${\rm U}_\star(1)$ gauge field model with oscillator term, Eur. Phys. J. C Part. Fields 67 (2010), 575-582, arXiv:0912.3642.
-
Brandt F.T., Das A., Frenkel J., General structure of the photon self-energy in noncommutative QED, Phys. Rev. D 65 (2002), 085017, 13 pages, hep-th/0112127.
-
Burić M., Latas D., Nikolić B., Radovanović V., The role of the Seiberg-Witten field redefinition in renormalization of noncommutative chiral electrodynamics, Eur. Phys. J. C Part. Fields 73 (2013), 2542, 10 pages, arXiv:1304.4451.
-
Burić M., Latas D., Radovanović V., Trampetić J., Nonzero $Z \to\gamma\gamma$ decays in the renormalizable gauge sector of the noncommutative standard model, Phys. Rev. D 75 (2007), 097701, 4 pages, hep-ph/0611299.
-
Burić M., Latas D., Radovanović V., Trampetić J., The absence of the $4\psi$ divergence in noncommutative chiral models, Phys. Rev. D 77 (2008), 045031, 7 pages, arXiv:0711.0887.
-
Burić M., Latas D., Radovanović V., Trampetić J., Chiral fermions in noncommutative electrodynamics: renormalisability and dispersion, Phys. Rev. D 83 (2011), 045023, 10 pages, arXiv:1009.4603.
-
Burić M., Radovanović V., Trampetić J., The one-loop renormalization of the gauge sector in the $\theta$-expanded noncommutative standard model, J. High Energy Phys. 2007 (2007), no. 3, 030, 17 pages, hep-th/0609073.
-
Calmet X., Jurčo B., Schupp P., Wess J., Wohlgenannt M., The standard model on non-commutative space-time, Eur. Phys. J. C Part. Fields 23 (2002), 363-376, hep-ph/0111115.
-
Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
-
Douglas M.R., Nekrasov N.A., Noncommutative field theory, Rev. Modern Phys. 73 (2001), 977-1029, hep-th/0106048.
-
Ettefaghi M.M., Haghighat M., Massive neutrino in noncommutative space-time, Phys. Rev. D 77 (2008), 056009, 8 pages, arXiv:0712.4034.
-
Filk T., Divergencies in a field theory on quantum space, Phys. Lett. B 376 (1996), 53-58.
-
Gomis J., Mehen T., Space-time noncommutative field theories and unitarity, Nuclear Phys. B 591 (2000), 265-276, hep-th/0005129.
-
Grimstrup J.M., Wulkenhaar R., Quantisation of $\theta$-expanded non-commutative QED, Eur. Phys. J. C Part. Fields 26 (2002), 139-151, hep-th/0205153.
-
Grosse H., Lechner G., Noncommutative deformations of Wightman quantum field theories, J. High Energy Phys. 2008 (2008), no. 9, 131, 29 pages, arXiv:0808.3459.
-
Grosse H., Wulkenhaar R., Renormalisation of $\phi^4$-theory on noncommutative ${\mathbb R}^4$ in the matrix base, Comm. Math. Phys. 256 (2005), 305-374, hep-th/0401128.
-
Grozin A.G., Lectures on perturbative HQET. I, hep-ph/0008300.
-
Hayakawa M., Perturbative analysis on infrared aspects of noncommutative QED on ${\mathbb R}^4$, Phys. Lett. B 478 (2000), 394-400, hep-th/9912094.
-
Hayakawa M., Perturbative analysis on infrared and ultraviolet aspects of noncommutative QED on ${\mathbb R}^4$, hep-th/9912167.
-
Hinchliffe I., Kersting N., Ma Y.L., Review of the phenomenology of noncommutative geometry, Internat. J. Modern Phys. A 19 (2004), 179-204, hep-ph/0205040.
-
Horvat R., Ilakovac A., Kekez D., Trampetić J., You J., Forbidden and invisible $Z$ boson decays in a covariant $\theta$-exact noncommutative standard model, J. Phys. G: Nuclear Part. Phys. 41 (2014), 055007, 13 pages, arXiv:1204.6201.
-
Horvat R., Ilakovac A., Schupp P., Trampetić J., You J., Neutrino propagation in noncommutative spacetimes, J. High Energy Phys. 2012 (2012), no. 4, 108, 28 pages, arXiv:1111.4951.
-
Horvat R., Ilakovac A., Schupp P., Trampetić J., You J., Yukawa couplings and seesaw neutrino masses in noncommutative gauge theory, Phys. Lett. B 715 (2012), 340-347, arXiv:1109.3085.
-
Horvat R., Ilakovac A., Trampetić J., You J., On UV/IR mixing in noncommutative gauge field theories, J. High Energy Phys. 2011 (2011), no. 12, 081, 11 pages.
-
Horvat R., Ilakovac A., Trampetić J., You J., Self-energies on deformed spacetimes, J. High Energy Phys. 2013 (2013), no. 11, 071, 27 pages, arXiv:1306.1239.
-
Horvat R., Kekez D., Schupp P., Trampetić J., You J., Photon-neutrino interaction in $\theta$-exact covariant noncommutative field theory, Phys. Rev. D 84 (2011), 045004, 10 pages, arXiv:1103.3383.
-
Horvat R., Kekez D., Trampetić J., Spacetime noncommutativity and ultra-high energy cosmic ray experiments, Phys. Rev. D 83 (2011), 065013, 5 pages, arXiv:1005.3209.
-
Horvat R., Trampetić J., Constraining noncommutative field theories with holography, J. High Energy Phys. 2011 (2011), no. 1, 112, 8 pages, arXiv:1009.2933.
-
Jackiw R., Pi S.-Y., Covariant coordinate transformations on noncommutative space, Phys. Rev. Lett. 88 (2002), 111603, 4 pages, hep-th/0111122.
-
Jaeckel J., Khoze V.V., Ringwald A., Telltale traces of ${\rm U}(1)$ fields in noncommutative standard model extensions, J. High Energy Phys. 2006 (2006), no. 2, 028, 21 pages, hep-ph/0508075.
-
Jurčo B., Schupp P., Wess J., Nonabelian noncommutative gauge theory via noncommutative extra dimensions, Nuclear Phys. B 604 (2001), 148-180, hep-th/0102129.
-
Latas D., Radovanović V., Trampetić J., Noncommutative ${\rm SU}(N)$ gauge theory and asymptotic freedom, Phys. Rev. D 76 (2007), 085006, 7 pages, hep-th/0703018.
-
Madore J., An introduction to noncommutative differential geometry and its physical applications, London Mathematical Society Lecture Note Series, Vol. 257, 2nd ed., Cambridge University Press, Cambridge, 1999.
-
Magnen J., Rivasseau V., Tanasa A., Commutative limit of a renormalizable noncommutative model, Europhys. Lett. 86 (2009), 11001, 6 pages, arXiv:0807.4093.
-
Martín C.P., The gauge anomaly and the Seiberg-Witten map, Nuclear Phys. B 652 (2003), 72-92, hep-th/0211164.
-
Martín C.P., The minimal and the new minimal supersymmetric grand unified theories on noncommutative space-time, Classical Quantum Gravity 30 (2013), 155019, 15 pages, arXiv:1302.3732.
-
Martín C.P., Sánchez-Ruiz D., One-loop UV divergent structure of ${\rm U}(1)$ Yang-Mills theory on noncommutative ${\mathbb R}^4$, Phys. Rev. Lett. 83 (1999), 476-479, hep-th/9903077.
-
Martín C.P., Tamarit C., Noncommutative GUT inspired theories and the UV finiteness of the fermionic four point functions, Phys. Rev. D 80 (2009), 065023, 6 pages, arXiv:0907.2464.
-
Martín C.P., Tamarit C., Renormalisability of noncommutative GUT inspired field theories with anomaly safe groups, J. High Energy Phys. 2009 (2009), no. 12, 042, 18 pages, arXiv:0910.2677.
-
Matusis A., Susskind L., Toumbas N., The IR/UV connection in non-commutative gauge theories, J. High Energy Phys. 2000 (2000), no. 12, 002, 18 pages, hep-th/0002075.
-
Mehen T., Wise M.B., Generalized $\star$-products, Wilson lines and the solution of the Seiberg-Witten equations, J. High Energy Phys. 2000 (2000), no. 12, 008, 10 pages, hep-th/0010204.
-
Meljanac S., Samsarov A., Trampetić J., Wohlgenannt M., Scalar field propagation in the $\phi^4$ $\kappa$-Minkowski model, J. High Energy Phys. 2011 (2011), no. 12, 010, 23 pages, arXiv:1111.5553.
-
Minkowski P., Schupp P., Trampetić J., Neutrino dipole moments and charge radii in non-commutative space-time, Eur. Phys. J. C Part. Fields 37 (2004), 123-128, hep-th/0302175.
-
Minwalla S., Van Raamsdonk M., Seiberg N., Noncommutative perturbative dynamics, J. High Energy Phys. 2000 (2000), no. 2, 020, 31 pages, hep-th/9912072.
-
Ohl T., Reuter J., Testing the noncommutative standard model at a future photon collider, Phys. Rev. D 70 (2004), 076007, 10 pages, hep-ph/0406098.
-
Okawa Y., Ooguri H., Exact solution to the Seiberg-Witten equation of noncommutative gauge theory, Phys. Rev. D 64 (2001), 046009, 11 pages, hep-th/0104036.
-
Rovelli C., Loop quantum gravity: the first 25 years, Classical Quantum Gravity 28 (2011), 153002, 35 pages, arXiv:1012.4707.
-
Rovelli C., Zakopane lectures on loop gravity, PoS Proc. Sci. (2011), PoS(QGQGS2011), 003, 60 pages, arXiv:1102.3660.
-
Schupp P., Trampetić J., Wess J., Raffelt G., The photon-neutrino interaction induced by non-commutativity and astrophysical bounds, Eur. Phys. J. C Part. Fields 36 (2004), 405-410, hep-ph/0212292.
-
Schupp P., You J., UV/IR mixing in noncommutative QED defined by Seiberg-Witten map, J. High Energy Phys. 2008 (2008), no. 8, 107, 10 pages, arXiv:0807.4886.
-
Seiberg N., Witten E., String theory and noncommutative geometry, J. High Energy Phys. 1999 (1999), no. 9, 032, 93 pages, hep-th/9908142.
-
Susskind L., Lindesay J., An introduction to black holes, information and the string theory revolution. The holographic universe, World Scientific Publishing Co. Inc., Hackensack, NJ, 2005.
-
Susskind L., Thorlacius L., Uglum J., The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993), 3743-3761, hep-th/9306069.
-
Szabo R.J., Quantum field theory on noncommutative spaces, Phys. Rep. 378 (2003), 207-299, \mboxhep-th/0109162.
-
Szabo R.J., Quantum gravity, field theory and signatures of noncommutative spacetime, Gen. Relativity Gravitation 42 (2010), 1-29, arXiv:0906.2913.
-
't Hooft G., On the quantum structure of a black hole, Nuclear Phys. B 256 (1985), 727-745.
-
Trampetić J., Signal for space-time noncommutativity: the $Z \to \gamma \gamma$ decay in the renormalizable gauge sector of the $\theta$-expanded NCSM, in Proceedings of 4th Summer School Modern Mathematical Physics'' (September 3-14, 2006, Belgrade, Serbia), Editors B. Dragovich, Z. Rakić, Institute of Physics, Belgrade, Serbia, 2007, 379-390, arXiv:0704.0559.
-
Trampetić J., Renormalizability and phenomenology of $\theta$-expanded noncommutative gauge field theory, Fortschr. Phys. 56 (2008), 521-531, arXiv:0802.2030.
-
Zeiner J., Noncommutative quantumelectrodynamics from Seiberg-Witten maps to all orders in $\theta^{\mu \nu}$, Ph.D. Thesis, Julius-Maximilians-Universität Würzburg, 2007.
|
|