Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 054, 20 pages      arXiv:1402.6184      https://doi.org/10.3842/SIGMA.2014.054
Contribution to the Special Issue on Deformations of Space-Time and its Symmetries

Two-Point Functions on Deformed Spacetime

Josip Trampetić a, b and Jiangyang You a
a) Rudjer Bošković Institute, P.O. Box 180, HR-10002 Zagreb, Croatia
b) Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München, Germany

Received February 24, 2014, in final form May 19, 2014; Published online May 29, 2014

Abstract
We present a review of the one-loop photon ($\Pi$) and neutrino ($\Sigma$) two-point functions in a covariant and deformed $\rm U(1)$ gauge-theory on the 4-dimensional noncommutative spaces, determined by a constant antisymmetric tensor $\theta^{\mu\nu}$, and by a parameter-space $(\kappa_f,\kappa_g)$, respectively. For the general fermion-photon $S_f(\kappa_f)$ and photon self-interaction $S_g(\kappa_g)$ the closed form results reveal two-point functions with all kind of pathological terms: the UV divergence, the quadratic UV/IR mixing terms as well as a logarithmic IR divergent term of the type $\ln(\mu^2(\theta p)^2)$. In addition, the photon-loop produces new tensor structures satisfying transversality condition by themselves. We show that the photon two-point function in the 4-dimensional Euclidean spacetime can be reduced to two finite terms by imposing a specific full rank of $\theta^{\mu\nu}$ and setting deformation parameters $(\kappa_f,\kappa_g)=(0,3)$. In this case the neutrino two-point function vanishes. Thus for a specific point $(0,3)$ in the parameter-space $(\kappa_f,\kappa_g)$, a covariant $\theta$-exact approach is able to produce a divergence-free result for the one-loop quantum corrections, having also both well-defined commutative limit and point-like limit of an extended object.

Key words: non-commutative geometry; photon and neutrino physics; non-perturbative effects.

pdf (629 kb)   tex (103 kb)

References

  1. Abel S., Chu C.-S., Goodsell M., Noncommutativity from the string perspective: modification of gravity at a mm without mm sized extra dimensions, J. High Energy Phys. 2006 (2006), no. 11, 058, 27 pages, hep-th/0606248.
  2. Abel S.A., Jaeckel J., Khoze V.V., Ringwald A., Vacuum birefringence as a probe of Planck scale noncommutativity, J. High Energy Phys. 2006 (2006), no. 9, 074, 18 pages, hep-ph/0607188.
  3. Alboteanu A., Ohl T., Rückl R., Probing the noncommutative standard model at hadron colliders, Phys. Rev. D 74 (2006), 096004, 9 pages, hep-ph/0608155.
  4. Alboteanu A., Ohl T., Rückl R., Noncommutative standard model at $\mathcal{O}(\theta^2)$, Phys. Rev. D 76 (2007), 105018, 10 pages, arXiv:0707.3595.
  5. Alboteanu A., Ohl T., Rückl R., The noncommutative standard model at colliders, Acta Phys. Polon. B 38 (2007), 3647-3651, arXiv:0709.2359.
  6. Álvarez-Gaumé L., Vázquez-Mozo M.A., General properties of non-commutative field theories, Nuclear Phys. B 668 (2003), 293-321, hep-th/0305093.
  7. Amelino-Camelia G., Ellis J., Mavromatos N.E., Nanopoulos D.V., Sarkar S., Tests of quantum gravity from observations of gamma-ray bursts, Nature 393 (1998), 763-765, astro-ph/9712103.
  8. Arkani-Hamed N., Dimopoulos S., Dvali G., The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998), 263-272, hep-ph/9803315.
  9. Aschieri P., Jurčo B., Schupp P., Wess J., Noncommutative GUTs, Standard Model and $C$, $P$, $T$, Nuclear Phys. B 651 (2003), 45-70, hep-th/0205214.
  10. Banerjee R., Ghosh S., Seiberg-Witten map and the axial anomaly in non-commutative field theory, Phys. Lett. B 533 (2002), 162-167, hep-th/0110177.
  11. Barnich G., Brandt F., Grigoriev M., Local BRST cohomology and Seiberg-Witten maps in noncommutative Yang-Mills theory, Nuclear Phys. B 677 (2004), 503-534, hep-th/0308092.
  12. Behr W., Deshpande N., Duplančić G., Schupp P., Trampetić J., Wess J., The $Z \to \gamma \gamma, g g$ decays in the noncommutative standard model, Eur. Phys. J. C Part. Fields 29 (2003), 441-446, hep-ph/0202121.
  13. Bichl A., Grimstrup J., Popp L., Schweda M., Grosse H., Wulkenhaar R., Renormalization of the noncommutative photon self-energy to all orders via Seiberg-Witten map, J. High Energy Phys. 2001 (2001), no. 6, 013, 15 pages, hep-th/0104097.
  14. Bichl A.A., Grimstrup J.M., Popp L., Schweda M., Wulkenhaar R., Perturbative analysis of the Seiberg-Witten map, Internat. J. Modern Phys. A 17 (2002), 2219-2231, hep-th/0102044.
  15. Bigatti D., Susskind L., Magnetic fields, branes, and noncommutative geometry, Phys. Rev. D 62 (2000), 066004, 6 pages, hep-th/9908056.
  16. Blaschke D.N., A new approach to non-commutative ${\rm U}_\star(N)$ gauge fields, Europhys. Lett. 91 (2010), 11001, 6 pages, arXiv:1005.1578.
  17. Blaschke D.N., Grosse H., Kronberger E., Schweda M., Wohlgenannt M., Loop calculations for the non-commutative ${\rm U}_\star(1)$ gauge field model with oscillator term, Eur. Phys. J. C Part. Fields 67 (2010), 575-582, arXiv:0912.3642.
  18. Brandt F.T., Das A., Frenkel J., General structure of the photon self-energy in noncommutative QED, Phys. Rev. D 65 (2002), 085017, 13 pages, hep-th/0112127.
  19. Burić M., Latas D., Nikolić B., Radovanović V., The role of the Seiberg-Witten field redefinition in renormalization of noncommutative chiral electrodynamics, Eur. Phys. J. C Part. Fields 73 (2013), 2542, 10 pages, arXiv:1304.4451.
  20. Burić M., Latas D., Radovanović V., Trampetić J., Nonzero $Z \to\gamma\gamma$ decays in the renormalizable gauge sector of the noncommutative standard model, Phys. Rev. D 75 (2007), 097701, 4 pages, hep-ph/0611299.
  21. Burić M., Latas D., Radovanović V., Trampetić J., The absence of the $4\psi$ divergence in noncommutative chiral models, Phys. Rev. D 77 (2008), 045031, 7 pages, arXiv:0711.0887.
  22. Burić M., Latas D., Radovanović V., Trampetić J., Chiral fermions in noncommutative electrodynamics: renormalisability and dispersion, Phys. Rev. D 83 (2011), 045023, 10 pages, arXiv:1009.4603.
  23. Burić M., Radovanović V., Trampetić J., The one-loop renormalization of the gauge sector in the $\theta$-expanded noncommutative standard model, J. High Energy Phys. 2007 (2007), no. 3, 030, 17 pages, hep-th/0609073.
  24. Calmet X., Jurčo B., Schupp P., Wess J., Wohlgenannt M., The standard model on non-commutative space-time, Eur. Phys. J. C Part. Fields 23 (2002), 363-376, hep-ph/0111115.
  25. Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
  26. Douglas M.R., Nekrasov N.A., Noncommutative field theory, Rev. Modern Phys. 73 (2001), 977-1029, hep-th/0106048.
  27. Ettefaghi M.M., Haghighat M., Massive neutrino in noncommutative space-time, Phys. Rev. D 77 (2008), 056009, 8 pages, arXiv:0712.4034.
  28. Filk T., Divergencies in a field theory on quantum space, Phys. Lett. B 376 (1996), 53-58.
  29. Gomis J., Mehen T., Space-time noncommutative field theories and unitarity, Nuclear Phys. B 591 (2000), 265-276, hep-th/0005129.
  30. Grimstrup J.M., Wulkenhaar R., Quantisation of $\theta$-expanded non-commutative QED, Eur. Phys. J. C Part. Fields 26 (2002), 139-151, hep-th/0205153.
  31. Grosse H., Lechner G., Noncommutative deformations of Wightman quantum field theories, J. High Energy Phys. 2008 (2008), no. 9, 131, 29 pages, arXiv:0808.3459.
  32. Grosse H., Wulkenhaar R., Renormalisation of $\phi^4$-theory on noncommutative ${\mathbb R}^4$ in the matrix base, Comm. Math. Phys. 256 (2005), 305-374, hep-th/0401128.
  33. Grozin A.G., Lectures on perturbative HQET. I, hep-ph/0008300.
  34. Hayakawa M., Perturbative analysis on infrared aspects of noncommutative QED on ${\mathbb R}^4$, Phys. Lett. B 478 (2000), 394-400, hep-th/9912094.
  35. Hayakawa M., Perturbative analysis on infrared and ultraviolet aspects of noncommutative QED on ${\mathbb R}^4$, hep-th/9912167.
  36. Hinchliffe I., Kersting N., Ma Y.L., Review of the phenomenology of noncommutative geometry, Internat. J. Modern Phys. A 19 (2004), 179-204, hep-ph/0205040.
  37. Horvat R., Ilakovac A., Kekez D., Trampetić J., You J., Forbidden and invisible $Z$ boson decays in a covariant $\theta$-exact noncommutative standard model, J. Phys. G: Nuclear Part. Phys. 41 (2014), 055007, 13 pages, arXiv:1204.6201.
  38. Horvat R., Ilakovac A., Schupp P., Trampetić J., You J., Neutrino propagation in noncommutative spacetimes, J. High Energy Phys. 2012 (2012), no. 4, 108, 28 pages, arXiv:1111.4951.
  39. Horvat R., Ilakovac A., Schupp P., Trampetić J., You J., Yukawa couplings and seesaw neutrino masses in noncommutative gauge theory, Phys. Lett. B 715 (2012), 340-347, arXiv:1109.3085.
  40. Horvat R., Ilakovac A., Trampetić J., You J., On UV/IR mixing in noncommutative gauge field theories, J. High Energy Phys. 2011 (2011), no. 12, 081, 11 pages.
  41. Horvat R., Ilakovac A., Trampetić J., You J., Self-energies on deformed spacetimes, J. High Energy Phys. 2013 (2013), no. 11, 071, 27 pages, arXiv:1306.1239.
  42. Horvat R., Kekez D., Schupp P., Trampetić J., You J., Photon-neutrino interaction in $\theta$-exact covariant noncommutative field theory, Phys. Rev. D 84 (2011), 045004, 10 pages, arXiv:1103.3383.
  43. Horvat R., Kekez D., Trampetić J., Spacetime noncommutativity and ultra-high energy cosmic ray experiments, Phys. Rev. D 83 (2011), 065013, 5 pages, arXiv:1005.3209.
  44. Horvat R., Trampetić J., Constraining noncommutative field theories with holography, J. High Energy Phys. 2011 (2011), no. 1, 112, 8 pages, arXiv:1009.2933.
  45. Jackiw R., Pi S.-Y., Covariant coordinate transformations on noncommutative space, Phys. Rev. Lett. 88 (2002), 111603, 4 pages, hep-th/0111122.
  46. Jaeckel J., Khoze V.V., Ringwald A., Telltale traces of ${\rm U}(1)$ fields in noncommutative standard model extensions, J. High Energy Phys. 2006 (2006), no. 2, 028, 21 pages, hep-ph/0508075.
  47. Jurčo B., Schupp P., Wess J., Nonabelian noncommutative gauge theory via noncommutative extra dimensions, Nuclear Phys. B 604 (2001), 148-180, hep-th/0102129.
  48. Latas D., Radovanović V., Trampetić J., Noncommutative ${\rm SU}(N)$ gauge theory and asymptotic freedom, Phys. Rev. D 76 (2007), 085006, 7 pages, hep-th/0703018.
  49. Madore J., An introduction to noncommutative differential geometry and its physical applications, London Mathematical Society Lecture Note Series, Vol. 257, 2nd ed., Cambridge University Press, Cambridge, 1999.
  50. Magnen J., Rivasseau V., Tanasa A., Commutative limit of a renormalizable noncommutative model, Europhys. Lett. 86 (2009), 11001, 6 pages, arXiv:0807.4093.
  51. Martín C.P., The gauge anomaly and the Seiberg-Witten map, Nuclear Phys. B 652 (2003), 72-92, hep-th/0211164.
  52. Martín C.P., The minimal and the new minimal supersymmetric grand unified theories on noncommutative space-time, Classical Quantum Gravity 30 (2013), 155019, 15 pages, arXiv:1302.3732.
  53. Martín C.P., Sánchez-Ruiz D., One-loop UV divergent structure of ${\rm U}(1)$ Yang-Mills theory on noncommutative ${\mathbb R}^4$, Phys. Rev. Lett. 83 (1999), 476-479, hep-th/9903077.
  54. Martín C.P., Tamarit C., Noncommutative GUT inspired theories and the UV finiteness of the fermionic four point functions, Phys. Rev. D 80 (2009), 065023, 6 pages, arXiv:0907.2464.
  55. Martín C.P., Tamarit C., Renormalisability of noncommutative GUT inspired field theories with anomaly safe groups, J. High Energy Phys. 2009 (2009), no. 12, 042, 18 pages, arXiv:0910.2677.
  56. Matusis A., Susskind L., Toumbas N., The IR/UV connection in non-commutative gauge theories, J. High Energy Phys. 2000 (2000), no. 12, 002, 18 pages, hep-th/0002075.
  57. Mehen T., Wise M.B., Generalized $\star$-products, Wilson lines and the solution of the Seiberg-Witten equations, J. High Energy Phys. 2000 (2000), no. 12, 008, 10 pages, hep-th/0010204.
  58. Meljanac S., Samsarov A., Trampetić J., Wohlgenannt M., Scalar field propagation in the $\phi^4$ $\kappa$-Minkowski model, J. High Energy Phys. 2011 (2011), no. 12, 010, 23 pages, arXiv:1111.5553.
  59. Minkowski P., Schupp P., Trampetić J., Neutrino dipole moments and charge radii in non-commutative space-time, Eur. Phys. J. C Part. Fields 37 (2004), 123-128, hep-th/0302175.
  60. Minwalla S., Van Raamsdonk M., Seiberg N., Noncommutative perturbative dynamics, J. High Energy Phys. 2000 (2000), no. 2, 020, 31 pages, hep-th/9912072.
  61. Ohl T., Reuter J., Testing the noncommutative standard model at a future photon collider, Phys. Rev. D 70 (2004), 076007, 10 pages, hep-ph/0406098.
  62. Okawa Y., Ooguri H., Exact solution to the Seiberg-Witten equation of noncommutative gauge theory, Phys. Rev. D 64 (2001), 046009, 11 pages, hep-th/0104036.
  63. Rovelli C., Loop quantum gravity: the first 25 years, Classical Quantum Gravity 28 (2011), 153002, 35 pages, arXiv:1012.4707.
  64. Rovelli C., Zakopane lectures on loop gravity, PoS Proc. Sci. (2011), PoS(QGQGS2011), 003, 60 pages, arXiv:1102.3660.
  65. Schupp P., Trampetić J., Wess J., Raffelt G., The photon-neutrino interaction induced by non-commutativity and astrophysical bounds, Eur. Phys. J. C Part. Fields 36 (2004), 405-410, hep-ph/0212292.
  66. Schupp P., You J., UV/IR mixing in noncommutative QED defined by Seiberg-Witten map, J. High Energy Phys. 2008 (2008), no. 8, 107, 10 pages, arXiv:0807.4886.
  67. Seiberg N., Witten E., String theory and noncommutative geometry, J. High Energy Phys. 1999 (1999), no. 9, 032, 93 pages, hep-th/9908142.
  68. Susskind L., Lindesay J., An introduction to black holes, information and the string theory revolution. The holographic universe, World Scientific Publishing Co. Inc., Hackensack, NJ, 2005.
  69. Susskind L., Thorlacius L., Uglum J., The stretched horizon and black hole complementarity, Phys. Rev. D 48 (1993), 3743-3761, hep-th/9306069.
  70. Szabo R.J., Quantum field theory on noncommutative spaces, Phys. Rep. 378 (2003), 207-299, \mboxhep-th/0109162.
  71. Szabo R.J., Quantum gravity, field theory and signatures of noncommutative spacetime, Gen. Relativity Gravitation 42 (2010), 1-29, arXiv:0906.2913.
  72. 't Hooft G., On the quantum structure of a black hole, Nuclear Phys. B 256 (1985), 727-745.
  73. Trampetić J., Signal for space-time noncommutativity: the $Z \to \gamma \gamma$ decay in the renormalizable gauge sector of the $\theta$-expanded NCSM, in Proceedings of 4th Summer School “Modern Mathematical Physics'' (September 3-14, 2006, Belgrade, Serbia), Editors B. Dragovich, Z. Rakić, Institute of Physics, Belgrade, Serbia, 2007, 379-390, arXiv:0704.0559.
  74. Trampetić J., Renormalizability and phenomenology of $\theta$-expanded noncommutative gauge field theory, Fortschr. Phys. 56 (2008), 521-531, arXiv:0802.2030.
  75. Zeiner J., Noncommutative quantumelectrodynamics from Seiberg-Witten maps to all orders in $\theta^{\mu \nu}$, Ph.D. Thesis, Julius-Maximilians-Universität Würzburg, 2007.


Previous article  Next article   Contents of Volume 10 (2014)