|
SIGMA 10 (2014), 053, 23 pages arXiv:1402.7039
https://doi.org/10.3842/SIGMA.2014.053
Contribution to the Special Issue on Deformations of Space-Time and its Symmetries
Towards Non-Commutative Deformations of Relativistic Wave Equations in 2+1 Dimensions
Bernd J. Schroers a and Matthias Wilhelm b
a) Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
b) Institut für Mathematik und Institut für Physik, Humboldt-Universität zu Berlin, IRIS-Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany
Received February 28, 2014, in final form May 09, 2014; Published online May 20, 2014
Abstract
We consider the deformation of the Poincaré group in 2+1 dimensions into the quantum double of the Lorentz
group and construct Lorentz-covariant momentum-space formulations of the irreducible representations describing massive
particles with spin 0, 1/2 and 1 in the deformed theory.
We discuss ways of obtaining non-commutative versions of relativistic wave equations like the Klein-Gordon, Dirac and
Proca equations in 2+1 dimensions by applying a suitably defined Fourier transform, and point out the relation between
non-commutative Dirac equations and the exponentiated Dirac operator considered by Atiyah and Moore.
Key words:
relativistic wave equations; quantum groups; curved momentum space; non-commutative spacetime.
pdf (514 kb)
tex (34 kb)
References
- Achúcarro A., Townsend P.K., A Chern-Simons action for
three-dimensional anti-de Sitter supergravity theories, Phys.
Lett. B 180 (1986), 89-92.
- Amelino-Camelia G., Doubly-special relativity: facts, myths and some key open
issues, Symmetry 2 (2010), 230-271, arXiv:1003.3942.
- Amelino-Camelia G., Freidel L., Kowalski-Glikman J., Smolin L., The principle
of relative locality, Phys. Rev. D 84 (2011), 084010,
13 pages, arXiv:1101.0931.
- Arzano M., Latini D., Lotito M., Group momentum space and Hopf algebra
symmetries of point particles coupled to 2+1 gravity, arXiv:1403.3038.
- Atiyah M.F., Moore G.W., A shifted view of fundamental physics,
arXiv:1009.3176.
- Bais F.A., Muller N.M., Topological field theory and the quantum double of
SU(2), Nuclear Phys. B 530 (1998), 349-400,
hep-th/9804130.
- Bais F.A., Muller N.M., Schroers B.J., Quantum group symmetry and particle
scattering in (2+1)-dimensional quantum gravity, Nuclear Phys. B
640 (2002), 3-45, hep-th/0205021.
- Barut A.O., Raczka R., Theory of group representations and applications,
2nd ed., World Scientific Publishing Co., Singapore, 1986.
- Batista E., Majid S., Noncommutative geometry of angular momentum space
U(su(2)), J. Math. Phys. 44 (2003),
107-137, hep-th/0205128.
- Binegar B., Relativistic field theories in three dimensions, J. Math.
Phys. 23 (1982), 1511-1517.
- Born M., A suggestion for unifying quantum theory and relativity,
Proc. R. Soc. Lond. Ser. A 165 (1938), 291-303.
- de Sousa Gerbert P., On spin and (quantum) gravity in 2+1 dimensions,
Nuclear Phys. B 346 (1990), 440-472.
- Drinfel'd V.G., Quantum groups, in Proceedings of the International
Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986),
Amer. Math. Soc., Providence, RI, 1987, 798-820.
- Dupuis M., Girelli F., Livine E., Spinors and Voros star-product for group
field theory: first contact, Phys. Rev. D 86 (2012),
105034, 5 pages, arXiv:1107.5693.
- Freidel L., Livine E.R., 3D quantum gravity and effective noncommutative
quantum field theory, Phys. Rev. Lett. 96 (2006), 221301,
4 pages, hep-th/0512113.
- Freidel L., Livine E.R., Ponzano-Regge model revisited. III. Feynman
diagrams and effective field theory, Classical Quantum Gravity
23 (2006), 2021-2061, hep-th/0502106.
- Freidel L., Majid S., Noncommutative harmonic analysis, sampling theory and the
Duflo map in 2+1 quantum gravity, Classical Quantum Gravity
25 (2008), 045006, 37 pages, hep-th/0601004.
- Gitman D.M., Shelepin A.L., Poincaré group and relativistic wave equations in
2+1 dimensions, J. Phys. A: Math. Gen. 30 (1997),
6093-6121.
- Grigore D.R., The projective unitary irreducible representations of the
Poincaré group in 1+2 dimensions, J. Math. Phys. 34
(1993), 4172-4189, hep-th/9304142.
- Guedes C., Oriti D., Raasakka M., Quantization maps, algebra representation,
and non-commutative Fourier transform for Lie groups, J. Math.
Phys. 54 (2013), 083508, 31 pages, arXiv:1301.7750.
- Imai S., Sasakura N., Scalar field theories in a Lorentz-invariant
three-dimensional noncommutative space-time, J. High Energy Phys.
2000 (2000), no. 9, 032, 23 pages, hep-th/0005178.
- Jackiw R., Nair V.P., Relativistic wave equation for anyons, Phys.
Rev. D 43 (1991), 1933-1942.
- Joung E., Mourad J., Noui K., Three dimensional quantum geometry and deformed
symmetry, J. Math. Phys. 50 (2009), 052503, 29 pages,
arXiv:0806.4121.
- Kempf A., Majid S., Algebraic q-integration and Fourier theory on quantum
and braided spaces, J. Math. Phys. 35 (1994), 6802-6837,
hep-th/9402037.
- Knapp A.W., Representation theory of semisimple groups. An overview based on
examples, Princeton Mathematical Series, Vol. 36, Princeton
University Press, Princeton, NJ, 1986.
- Koornwinder T.H., Muller N.M., The quantum double of a (locally) compact group,
J. Lie Theory 7 (1997), 101-120, q-alg/9712042.
- Lukierski J., Ruegg H., Nowicki A., Tolstoy V.N., q-deformation of
Poincaré algebra, Phys. Lett. B 264 (1991), 331-338.
- Majid S., Noncommutative-geometric groups by a bicrossproduct construction:
Hopf algebras at the Planck scale, Ph.D. Thesis, Harvard University,
1988.
- Majid S., Foundations of quantum group theory, Cambridge University Press,
Cambridge, 1995.
- Majid S., Ruegg H., Bicrossproduct structure of κ-Poincaré group
and non-commutative geometry, Phys. Lett. B 334 (1994),
348-354, hep-th/9405107.
- Majid S., Schroers B.J., q-deformation and semidualization in 3D quantum
gravity, J. Phys. A: Math. Theor. 42 (2009), 425402,
40 pages, arXiv:0806.2587.
- Matschull H.J., Welling M., Quantum mechanics of a point particle in
(2+1)-dimensional gravity, Classical Quantum Gravity 15
(1998), 2981-3030, gr-qc/9708054.
- Meusburger C., Schroers B.J., Poisson structure and symmetry in the
Chern-Simons formulation of (2+1)-dimensional gravity, Classical
Quantum Gravity 20 (2003), 2193-2233, gr-qc/0301108.
- Meusburger C., Schroers B.J., The quantisation of Poisson structures arising
in Chern-Simons theory with gauge group G×g*,
Adv. Theor. Math. Phys. 7 (2003), 1003-1043,
hep-th/0310218.
- Meusburger C., Schroers B.J., Quaternionic and Poisson-Lie structures in
three-dimensional gravity: the cosmological constant as deformation
parameter, J. Math. Phys. 49 (2008), 083510, 27 pages,
arXiv:0708.1507.
- Raasakka M., Group Fourier transform and the phase space path integral for
finite dimensional Lie groups, arXiv:1111.6481.
- Sasai Y., Sasakura N., Domain wall solitons and Hopf algebraic translational
symmetries in noncommutative field theories, Internat. J. Modern
Phys. A 23 (2008), 2277-2278, arXiv:0711.3059.
- Sasai Y., Sasakura N., The Cutkosky rule of three dimensional noncommutative
field theory in Lie algebraic noncommutative spacetime, J. High
Energy Phys. 2009 (2009), no. 6, 013, 22 pages, arXiv:0902.3050.
- Sasai Y., Sasakura N., Massive particles coupled with 2+1 dimensional gravity
and noncommutative field theory, arXiv:0902.3502.
- Schroers B.J., Combinatorial quantisation of Euclidean gravity in three
dimensions, in Quantization of Singular Symplectic Quotients,
Progress in Mathematics, Vol. 198, Editors N.P. Landsman, M. Pflaum,
M. Schlichenmaier, Birkhäuser Verlag, Basel, 2001, 307-328,
math.QA/0006228.
- Schroers B.J., Quantum gravity and non-commutative spacetimes in three
dimensions: a unified approach, Acta Phys. Polon. B Proc. Suppl.
4 (2011), 379-402, arXiv:1105.3945.
- Snyder H.S., Quantized space-time, Phys. Rev. 71 (1947),
38-41.
- Sternberg S., Group theory and physics, Cambridge University Press, Cambridge,
1994.
- 't Hooft G., Quantization of point particles in (2+1)-dimensional gravity and
spacetime discreteness, Classical Quantum Gravity 13
(1996), 1023-1039, gr-qc/9601014.
- Witten E., 2+1-dimensional gravity as an exactly soluble system,
Nuclear Phys. B 311 (1988), 46-78.
|
|