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1 Introduction

A motion of a curve is a smooth one-parameter family of connected curves in a space. It is
known that many differential equations related to integrable systems can be linked with special
motions of curves [10, 11, 12, 29]. For example, for a special motion of an inextensible curve in
the Euclidean plane, the curvature evolves according to the modified Korteweg–de Vries (mKdV)
equation [19] (cf. Section 4 below). There are a lot of preceding studies on motions of curves
related to Euclidean geometry and the mKdV equation. See [24, 30, 32] and references therein.
For special motions of a space curve, it is also known that the nonlinear Schrödinger equation
appears [16]. In [13, 14], the authors studied motions of a curve in the complex hyperbola under
which the curvature evolves according to the Burgers equation.

In this paper, we shall study motions of an equicentroaffine plane curve. Under a special
motion of an equicentroaffine plane curve, the equicentroaffine curvature evolves according to
the Korteweg–de Vries (KdV) equation. In order to explain the above motion geometrically,
Pinkall [28] introduced the natural presymplectic form on the space of closed equicentroaffine
plane curves with fixed enclosing area, and showed that the equicentroaffine curvature evolves
according to the KdV equation when the flow is generated by the total equicentroaffine curva-
ture. Furthermore, the result has been generalized to the case of higher KdV flows (cf. [9, 15]).

On the other hand, it is known that a lot of completely integrable systems are described as bi-
Hamiltonian systems, from which the existence of many first integrals can be deduced (Magri’s
theorem [22, 27]). In this context, many of motions of curves as above have been studied from the
viewpoint of bi-Hamiltonian systems recently [1, 2, 3, 4, 5, 6, 7, 8, 21, 23, 24, 31]. The purpose
of this paper is to construct a multi-Hamiltonian structure associated to the higher KdV flows
on each level set of Hamiltonian functions in a geometric way (Theorem 7). Moreover, we shall
also introduce multi-Hamiltonian structures associated to the higher mKdV flows on the spaces
of closed Euclidean plane curves via the geometric Miura transformation.
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2 A bi-Hamiltonian structure on the space
of closed equicentroaffine curves

Throughout this paper all maps are assumed to be smooth.
For a regular plane curve γ whose velocity vector is transversal to the position vector at each

point, we can choose the parameter s of γ as det

(
γ(s)
γs(s)

)
≡ 1 holds. A plane curve γ provided

with such a parameter s is called an equicentroaffine plane curve. For an equicentroaffine plane
curve γ, we can define a function κ, called the equicentroaffine curvature, by γss = −κγ.

We set the space M of closed equicentroaffine plane curves by

M =

{
γ : S1 → R2 \ {0}

∣∣∣∣det

(
γ
γs

)
= 1

}
,

where S1 = R/2πZ. Let γ( · , t) ∈M be a one-parameter family of closed equicentroaffine plane
curves. As in [28], the motion vector field γt is represented as

γt = −1

2
αsγ + αγs, α : S1 → R, (1)

and the equicentroaffine curvature κ evolves as

κt = Ωαs =
1

2
αsss + 2καs + κsα, (2)

where

Ω =
1

2
D2
s + 2κ+ κsD

−1
s , Ds =

∂

∂s
,

is the recursion operator of the KdV equation:

κt = Ωκs =
1

2
κsss + 3κκs.

Hence when we choose the one-parameter family γ( ·, t) as α = D−1s Ωn−1κs, we obtain the nth
KdV equation for κ:

κt = Ωnκs. (3)

The tangent space of M at γ ∈M is described as

TγM =

{
−1

2
αsγ + αγs

∣∣∣∣α : S1 → R
}
,

and we can define a presymplectic form ω0 on M by

ω0(X,Y ) =

∫
S1

det

(
X
Y

)
ds, X, Y ∈ TγM.

When X and Y are given by

X = −1

2
αsγ + αγs, Y = −1

2
βsγ + βγs, α, β : S1 → R, (4)

a direct calculation shows that

ω0(X,Y ) =

∫
S1

αβsds,

from which we see that the kernel of ω0 at γ is R · γs.
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It is known that the higher KdV equation (3) as well as (2) has an infinite series of conserved
quantities {Hm}m∈N given in the form of

Hm =

∫
S1

hm(κ, κs, κss, . . . )ds,

where hm is a polynomial in κ and its derivatives up to order m, for example,

h1 = κ, h2 =
1

2
κ2, h3 =

1

2
κ3 − 1

4
κ2s

(see [17, 20, 25, 26]). Moreover, by using the conserved quantity, nth KdV equation (3) can be
expressed as

κt = Ds
δHn+2

δκ
, (5)

where δHn+2/δκ is the variational derivative of Hn+2:

δHn+2

δκ
=
∂hn+2

∂κ
−Ds

∂hn+2

∂κs
+D2

s

∂hn+2

∂κss
− · · · .

The expression (5) played an important role in computation in [15], where we studied the higher
KdV flows on the space of closed equicentroaffine curves as Hamiltonian systems; using the
above presymplectic structure ω0, we gave the Hamiltonian flows associated with the higher KdV
equations. The paper [15] deals also with the geometric Miura transformation as is mentioned
in Section 5 below.

For each n ∈ N, we define a vector field Xn on M by

(Xn)γ = −1

2

(
Ωn−1κs

)
γ +

(
D−1s Ωn−1κs

)
γs, γ ∈M.

Regarding {Hm}m∈N as functions on M by substituting the equicentroaffine curvature of γ for
κ, we have the following proposition, which is essentially due to Pinkall [28] in the case n = 1.

Proposition 1 ([15]). For each n ∈ N, Xn is a Hamiltonian vector field for Hn with respect
to ω0, i.e., dHn = ω0(Xn, · ) holds. Hence Hn is a Hamiltonian function for the nth KdV flow
γt = Xn.

Now, we define another form ω1 on M by

ω1(X,Y ) =

∫
S1

det

(
X

(D2
s + κ)Y

)
ds, X, Y ∈ TγM,

which is represented as

ω1(X,Y ) =

∫
S1

αΩβsds (6)

for X, Y given by (4). The following shows that ω0 and ω1 with {Hm}m∈N define a bi-
Hamiltonian structure on M (cf. [22, 27]).

Theorem 2. The form ω1 is a presymplectic form onM. For each n ∈ N, Xn is a Hamiltonian
vector field for Hn+1 with respect to ω1.
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Proof. For two functions F and G on M of the form

F =

∫
S1

f(κ, κs, κss, . . . )ds, G =

∫
S1

g(κ, κs, κss, . . . )ds, (7)

we set

{F,G}1 =

∫
S1

δF

δκ
ΩDs

δG

δκ
ds.

Then from [18, 22], we see that { · , · }1 provides a Poisson bracket with

Xn = −{Hn+1, · }1.

We put α̃F = δF/δκ and (X̃F )γ = −(1/2)(α̃F )sγ+ α̃Fγs. Since the differentiation of F along
a motion γt = Xγ = −(1/2)αsγ + αγs is given as

XF =
dF

dt
=

∫
S1

δF

δκ
κtds =

∫
S1

δF

δκ
Ωαsds,

we have

ω1(X̃F , X) =

∫
S1

δF

δκ
Ωαsds = XF = dF (X)

and

ω1(X̃F , X̃G) =

∫
S1

δF

δκ
ΩDs

δG

δκ
= {F,G}1.

Hence ω1 is skew-symmetric and its closedness follows from the Jacobi identity for { · , · }1 since
for functions F , G and H =

∫
S1 h(κ, κs, κss, . . . )ds on M we have

dω
(
X̃F , X̃G, X̃H

)
= 2
(
{{F,G}1, H}1 + {{G,H}1, F}1 + {{H,F}1, G}1

)
= 0.

Moreover, since

X̃FG =

∫
S1

δG

δκ
ΩDs

δF

δκ
ds = {G,F}1 = −{F,G}1,

we obtain Xn = X̃Hn+1 and hence

ω1(Xn, · ) = ω1

(
X̃Hn+1 , ·

)
= dHn+1.

Therefore Xn is a Hamiltonian vector field for Hn+1 with respect to ω1. �

The special linear group of degree two SL(2;R) acts on M as M 3 γ 7→ Aγ ∈ M (A ∈
SL(2;R)). Two elements of M belong to the same orbit if and only if their equicentroaffine
curvatures coincide. Hence ω1 is invariant under the action of SL(2;R). Moreover, the kernel
of ω1 at γ is the tangent space of the orbit SL(2;R) · γ; indeed for a one-parameter family
γ(·, t) ∈M, it follows from (2) and (6) that the tangent vector (1) belongs to the kernel of ω1 if
and only if κt = 0, that is, κ is independent of t and hence γ(·, t) is contained in an SL(2;R)-orbit.
As a consequence, ω1 defines a symplectic form on the quotient space M/SL(2;R).

We consider another action on M given by

M3 γ 7→ γ( ·+ σ) ∈M, σ ∈ S1. (8)

It is obvious that this S1-action is presymplectic, that is, it leaves ω1 invariant. Moreover, the
action is Hamiltonian as we see in the proof of the following theorem.
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Theorem 3. The moment map µ1 for the S1-action (8) with respect to ω1 is given by

µ1(γ)

(
∂

∂σ

)
= H1(γ), γ ∈M. (9)

Proof. The fundamental vector field A on M corresponding to ∂/∂σ ∈ Lie(S1) is given by
Aγ = γs (γ ∈M). For any tangent vector γt = −(1/2)αsγ + αγs, we have

ω1(A, γt) = ω1(γs, γt) =

∫
S1

Ωαsds =

∫
S1

κtds =
d

dt
H1(γ) = dH1(γt),

which implies (9) by the definition of the moment map. �

Remark 4. Let Φτ
n be the flow generated by Xn, that is, Φ·n is a one-parameter transformation

group of M such that

∂

∂τ

∣∣∣∣
τ=0

Φτ
n(γ) = (Xn)γ , γ ∈M.

As an R-action on M, Φ·n is Hamiltonian with respect to ω0 and the corresponding moment
map is given by Hn.

3 Multi-Hamiltonian structures on the level sets
of Hamiltonians

For a given sequence of real numbers C = {ck}k∈N, we define subsets M(Cm) (m = 1, 2, . . . )
of M by

M(Cm) = H−11 (c1) ∩ · · · ∩H−1m (cm).

In the following, we assume that each M(Cm) is not an empty set.

Lemma 5. For functions α, β on S1, if D−1s ΩDsα is determined as a function on S1, then we
have ∫

S1

(
D−1s ΩDsα

)
· βsds =

∫
S1

αΩβsds. (10)

Proof. Noting ΩDs = (1/2)D3
s + κDs + Dsκ, we can easily verify (10) by integration by

parts. �

Proposition 6. For γ ∈ M(Cm) and X = −(1/2)αsγ + αγs ∈ TγM(Cm), Ωαs,Ω
2αs, . . . ,

Ωm+1αs are defined as functions on S1 and
∫
S1 Ωkαsds = 0 for any k = 1, 2, . . . ,m.

Proof. We shall show the proposition by induction on m. In the case m = 1, Ωαs = (1/2)αsss+
2καs + κsα is a function on S1 and we have∫

S1

Ωαsds =

∫
S1

καsds = ω0(X1, X) = dH1(X),

which vanishes since X ∈ TγM(C1) = Ker(dH1)γ ; moreover, this implies that D−1s Ωαs, and
consequently Ω2αs = ((1/2)D2

s + 2κ+ κsD
−1
s )Ωαs are defined on S1.
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We assume that the proposition holds for m = l for some l ≥ 1. Then, for X ∈ TγM(Cl+1) =
TγM(Cl) ∩Ker(dHl+1)γ , by using (10) we get∫

S1

Ωl+1αsds =

∫
S1

κΩlαsds =

∫
S1

((
D−1s ΩDs

)l
κ
)
· αsds =

∫
S1

(
D−1s Ωlκs

)
· αsds

= ω0(Xl+1, X) = dHl+1(X) = 0,

which implies that Ωl+2αs is determined as a function on S1 in the same way as in the case
m = 1. �

From Proposition 6, we can define a tensor field ωm+1 of type (0, 2) on M(Cm) by

ωm+1(X,Y ) =

∫
S1

αΩm+1βsds,

which is shown to be skew-symmetric by using (10). Furthermore, in a similar way to the proof
of Theorem 2, we see that ωm+1 is a presymplectic form and Xn is a Hamiltonian vector field
for the Hamiltonian function Hn+m+1 with respect to ωm+1; indeed, for functions F , G given
by (7) and for an integer k, putting

{F,G}k =

∫
S1

δF

δκ
ΩkDs

δG

δκ
ds,

we have a family of Poisson brackets { · , · }k with

Xn = −{Hn+2−k, · }k.

Setting α̃F = D−1s Ω−mDs(δF/δκ) and (X̃F )γ = −(1/2)(α̃F )sγ + α̃Fγs, we have

ωm+1

(
X̃F , X

)
= dF (X) and ωm+1

(
X̃F , X̃G

)
= {F,G}1−m,

which implies that ωm+1 is presymplectic. Moreover, since

X̃FG = −{F,G}1−m

holds, we have Xn = X̃Hn+m+1 and

ωm+1(Xn, · ) = ωm+1

(
X̃Hn+m+1 , ·

)
= dHn+m+1.

Hence Xn is a Hamiltonian vector field of Hn+m+1 with respect to ωm+1.
Besides ωm+1, we have m + 1 more presymplectic forms on M(Cm) by restricting ω0, ω1

on M and ωk+1’s on M(Ck)’s for k = 1, 2, . . . ,m− 1 to M(Cm); we denote them by the same
symbols. By the discussion so far, we obtain the following theorem.

Theorem 7. On M(Cm), for each n ∈ N and k = 0, 1, . . . ,m+ 1, Xn is a Hamiltonian vector
field for Hn+k with respect to ωk, that is, the set

(
{Hn}n∈N, {ωk}m+1

k=0

)
is a multi-Hamiltonian

system on M(Cm) describing the higher KdV flows.

As on M, we have the following theorem for a Hamiltonian S1-action on M(Cm):

M(Cm) 3 γ 7→ γ( ·+ σ) ∈M(Cm), σ ∈ S1.

Theorem 8. The moment map µm+1 for the S1-action on M(Cm) with respect to ωm+1 is
given by

µm+1(γ)

(
∂

∂σ

)
= Hm+1(γ), γ ∈M(Cm).
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Remark 9. We can define ωm+1 in a manner similar to the definitions of ω0 and ω1. We put
a map φ from TγM to the space of all vector fields along γ as

φX = −αsγ, X = −1

2
αsγ + αγs.

For any tangent vector X of M, (D2
s + κ)X has no γs-component and it belongs to the image

of φ if X is tangent to M(C1). Then for X ∈ TγM(C1) we have

φ−1
(
D2
s + κ

)
X = −1

2
(Ωαs)γ +

(
D−1s Ωαs

)
γs

and (
D2
s + κ

)
φ−1

(
D2
s + κ

)
X = −

(
Ω2αs

)
γ.

Hence∫
S1

det

(
X

(D2
s + κ)φ−1(D2

s + κ)Y

)
ds = ω2(X,Y )

holds. More generally, [φ−1(D2
s + κ)]mX can be defined for any tangent vector X of M(Cm)

and we obtain∫
S1

det

(
X

(D2
s + κ)

[
φ−1(D2

s + κ)
]m
Y

)
ds = ωm+1(X,Y )

on M(Cm). We note that this formula is valid in the case ω1 (m = 0) and even in the case ω0

(m = −1) since∫
S1

det

(
X
φY

)
ds = ω0(X,Y ).

4 A bi-Hamiltonian structure on the space of closed curves
in the Euclidean plane

We denote by E2 the Euclidean plane equipped with the standard inner product 〈 · , · 〉, and we
set the space M̂ of closed curves in the Euclidean plane E2 by

M̂ =
{
γ̂ : S1 → E2

∣∣ 〈γ̂s(s), γ̂s(s)〉 ≡ 1
}
.

For γ̂ ∈ M̂, the curvature κ̂ is defined by Ts = κ̂N , where T = γ̂s is the velocity vector field
and N is the left-oriented unit normal vector field along γ̂.

Let γ̂( · , t) ∈ M̂ be a one-parameter family of closed curves in E2. Then γ̂t is represented as

γ̂t = λT + µN, λ, µ : S1 → R, λs = κ̂µ,

and the curvature κ̂ evolves as

κ̂t = µss + κ̂λs + κ̂sλ = Ω̂(2µ),

where

Ω̂ =
1

2

(
D2
s + κ̂2 + κ̂sD

−1
s κ̂

)
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is the recursion operator of the mKdV equation:

κ̂t = Ω̂κ̂s =
1

2
κ̂sss +

3

4
κ̂2κ̂s.

Hence when we choose µ = (1/2)Ω̂n−1κ̂s, we have the nth mKdV equation for κ̂:

κ̂t = Ω̂nκ̂s. (11)

The tangent space of M̂ at γ̂ ∈ M̂ is described as

Tγ̂M̂ = {λT + µN |λ, µ : S1 → R, λs = κ̂µ},

and we can define a presymplectic form ω̂0 on M̂ by

ω̂0(X,Y ) =

∫
S1

〈DsX,Y 〉ds, X, Y ∈ Tγ̂M̂.

When X and Y are given by

X = λT + µN, Y = λ̃T + µ̃N, λ, µ, λ̃, µ̃ : S1 → R, (12)

we have

ω̂0(X,Y ) =

∫
S1

(κ̂λ+ µs)µ̃ds,

and we see that the kernel of ω̂0 at γ̂ is R · γ̂s.
As in the case of the higher KdV equation (3), the nth mKdV equation (11) can be written

as

κ̂t = Ds
δĤn+2

δκ̂

for an infinite series of conserved quantities {Ĥm}m∈N expressed in the form of

Ĥm =

∫
S1

ĥm(κ̂, κ̂s, κ̂ss, . . . )ds,

where ĥm is a polynomial in κ̂ and its derivatives up to order m, for example,

ĥ1 =
1

4
κ̂2, ĥ2 =

1

32
κ̂4 − 1

8
κ̂2s, ĥ3 =

1

128
κ̂6 − 5

32
κ̂2κ̂2s +

1

16
κ̂2ss.

For each n ∈ N, we define a vector field X̂n on M̂ by(
X̂n

)
γ̂

=
1

2

(
D−1s

(
κ̂Ω̂n−1κ̂s

))
T +

1

2

(
Ω̂n−1κ̂s

)
N, γ̂ ∈ M̂,

then we have the following.

Proposition 10 ([15]). For each n ∈ N, X̂n is a Hamiltonian vector field for Ĥn with respect
to ω̂0. Hence Ĥn is a Hamiltonian function for the nth mKdV flow γ̂t = X̂n.

In addition, we define another form ω̂1 on M̂ by

ω̂1(X,Y ) =

∫
S1

〈
DsX,D

2
sY
〉
ds, X, Y ∈ Tγ̂M̂,

which is represented as

ω̂1(X,Y ) =

∫
S1

(κ̂λ+ µs)Ω̂µ̃ds

for X, Y given by (12). The following theorem is proved in a similar way to the proof of
Theorem 2.
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Theorem 11. The form ω̂1 is a presymplectic form on M̂. For each n ∈ N, X̂n is a Hamiltonian
vector field for Ĥn+1 with respect to ω̂1.

Note that the Euclidean motion group E(2) = O(2)nR2 of E2 acts on M̂. It is easily verified
that ω̂1 is invariant under the E(2)-action and the kernel of ω̂1 at Tγ̂M̂ contains the tangent

space of the orbit. Hence ω1 determines a presymplectic form on M̂/E(2).

As well as on (M, ω1), S
1 acts on M̂ leaving ω̂1 invariant and the following theorem holds.

Theorem 12. The moment map µ̂1 for the S1-action on M̂ with respect to ω̂1 is given by

µ̂1(γ̂)

(
∂

∂σ

)
= Ĥ1(γ̂), γ̂ ∈ M̂.

5 The geometric Miura transformation and multi-Hamiltonian
structures on spaces of closed curves in the Euclidean plane

First, we briefly review the geometric Miura transformation which relates the Hamiltonian
structures onM and on M̂ (see [15] for more details). We consider the complexification ofM:

MC =

{
γ : S1 → C2 \ {0}

∣∣∣∣det

(
γ
γs

)
= 1

}
.

We determine the curvature of γ ∈ MC, (complex) presymplectic forms on MC, etc. by the
same formulas as in the case ofM, hence we use the same symbols κ, ω0, ω1, . . . to denote them.

By identifying the range E2 of γ̂ ∈ M̂ with a complex plane C, we define the geometric Miura
transformation Φ : M̂ →MC by

Φ(γ̂) = (−γ̂s)−
1
2 (γ̂, 1) , γ̂ ∈ M̂.

The curvature κ of Φ(γ̂) is related with the curvature κ̂ of γ̂ by the Miura transformation:

κ =

√
−1

2
κ̂s +

1

4
κ̂2. (13)

Moreover, we have the following.

Proposition 13 ([15]). For each n ∈ N, Φ∗X̂n = Xn holds and the Hamiltonian system (ω̂0, Ĥn)
on M̂ coincides with the pullback of (ω0, Hn) on MC by Φ:

ω̂0 = Φ∗ω0, Ĥn = Φ∗Hn. (14)

For a sequence of real numbers C = {ck}k∈N, the second equation of (14) implies that

M̂(Cm) = Ĥ−11 (c1) ∩ · · · ∩ Ĥ−1m (cm) = Φ−1
(
MC(Cm)

)
.

Therefore, Φ gives a map from M̂(Cm) to MC(Cm) and we have a presymplectic form ω̂m+1 =
Φ∗ωm+1 on M̂(Cm). Under these settings the following theorems are directly deduced from
Theorems 7 and 8.

Theorem 14. On M̂(Cm), for each n ∈ N and k = 0, 1, . . . ,m+ 1, X̂n is a Hamiltonian vector
field for Ĥn+k with respect to ω̂k, that is, the set

(
{Ĥn}n∈N, {ω̂k}m+1

k=0

)
is a multi-Hamiltonian

system on M̂(Cm) describing the higher modified KdV flows.
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Theorem 15. The moment map µ̂m+1 for the S1-action on M̂(Cm) with respect to ω̂m+1 is
given by

µ̂m+1(γ̂)

(
∂

∂σ

)
= Ĥm+1(γ̂), γ̂ ∈ M̂(Cm).

Remark 16. The symplectic form ωm+1 can be represented as

ω̂m+1(X,Y ) =

∫
S1

(κ̂λ+ µs)Ω̂
m+1µ̃ds, (15)

where X and Y are tangent vectors on M̂(Cm) given by (12). In fact, when κ and κ̂ are related
by (13), a direct calculation shows an identity(√

−1Ds + κ̂
)

Ω̂ = Ω
(√
−1Ds + κ̂

)
;

thus we have

ω̂m+1(X,Y ) = ωm+1

(
Φ∗X,Φ∗Y

)
=

∫
S1

(
λ+
√
−1µ

)
Ωm+1

(
λ̃+
√
−1µ̃

)
s
ds

=

∫
S1

(
λ+
√
−1µ

)
Ωm+1

(√
−1Ds + κ̂

)
µ̃ds

=

∫
S1

(
λ+
√
−1µ

)(√
−1Ds + κ̂

)
Ω̂m+1µ̃ds

=

∫
S1

[(
−
√
−1Ds + κ̂

)(
λ+
√
−1µ

)]
· Ω̂m+1µ̃ds

=

∫
S1

(κ̂λ+ µs)Ω̂
m+1µ̃ds.

We note that (15) implies ω̂m+1 is a real form, though ωm+1 on MC(Cm) is complex.
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