|
SIGMA 10 (2014), 033, 13 pages arXiv:1309.0357
https://doi.org/10.3842/SIGMA.2014.033
Contribution to the Special Issue on Progress in Twistor Theory
Hyperkähler Manifolds of Curves in Twistor Spaces
Roger Bielawski
Institut für Differentialgeometrie, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
Received November 06, 2013, in final form March 19, 2014; Published online March 28, 2014
Abstract
We discuss hypercomplex and hyperkähler structures obtained from higher degree curves in complex spaces
fibring over ${\mathbb{P}}^1$.
Key words:
hyperkähler metrics; hypercomplex structures; twistor methods; projective curves.
pdf (392 kb)
tex (22 kb)
References
- Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles,
M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988.
- Beauville A., Variétés Kähleriennes dont la première classe de
Chern est nulle, J. Differential Geom. 18 (1983),
755-782.
- Bielawski R., Line bundles on spectral curves and the generalised Legendre
transform construction of hyperkähler metrics, J. Geom. Phys.
59 (2009), 374-390, arXiv:0806.0510.
- Bielawski R., Schwachhöfer L., Hypercomplex limits of pluricomplex
structures and the Euclidean limit of hyperbolic monopoles, Ann.
Global Anal. Geom. 44 (2013), 245-256, arXiv:1201.0781.
- Cherkis S.A., Hitchin N.J., Gravitational instantons of type $D_k$,
Comm. Math. Phys. 260 (2005), 299-317,
hep-th/0310084.
- Douady A., Le problème des modules pour les sous-espaces analytiques compacts
d'un espace analytique donné, Ann. Inst. Fourier (Grenoble)
16 (1966), 1-95.
- Eisenbud D., Commutative algebra with a view toward algebraic geometry,
Graduate Texts in Mathematics, Vol. 150, Springer-Verlag, New York,
1995.
- Eisenbud D., Van de Ven A., On the normal bundles of smooth rational space
curves, Math. Ann. 256 (1981), 453-463.
- Ellia Ph., Exemples de courbes de ${\bf P}^{3}$ à fibré normal
semi-stable, stable, Math. Ann. 264 (1983), 389-396.
- Ellingsrud G., Hirschowitz A., Sur le fibré normal des courbes gauches,
C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 245-248.
- Gantmacher F.R., The theory of matrices, Vols. 1, 2, Chelsea Publishing Co.,
New York, 1959.
- Ghione F., Sacchiero G., Normal bundles of rational curves in ${\bf P}^{3}$,
Manuscripta Math. 33 (1980), 111-128.
- Grauert H., Peternell Th., Remmert R. (Editors), Several complex
variables. VII. Sheaf-theoretical methods in complex analysis,
Encyclopaedia of Mathematical Sciences, Vol. 74, Springer-Verlag,
Berlin, 1994.
- Hartshorne R., Deformation theory, Graduate Texts in Mathematics, Vol. 257, Springer, New York, 2010.
- Hitchin N.J., Karlhede A., Lindström U., Rocek M., Hyper-Kähler
metrics and supersymmetry, Comm. Math. Phys. 108 (1987),
535-589.
- Huggett S.A., Merkulov S.A., Twistor transform of vector bundles, Math.
Scand. 85 (1999), 219-244.
- Lindström U., Rocek M., New hyper-Kähler metrics and new
supermultiplets, Comm. Math. Phys. 115 (1988), 21-29.
- Manin Yu.I., Gauge field theory and complex geometry, Grundlehren der
Mathematischen Wissenschaften, Vol. 289, 2nd ed., Springer-Verlag, Berlin,
1997.
- Nash O., A new approach to monopole moduli spaces, Nonlinearity
20 (2007), 1645-1675.
- Pourcin G., Théorème de Douady au-dessus de $S$, Ann. Scuola
Norm. Sup. Pisa 23 (1969), 451-459.
- Salamon S.M., Differential geometry of quaternionic manifolds, Ann.
Sci. École Norm. Sup. (4) 19 (1986), 31-55.
- Ward R.S., On self-dual gauge fields, Phys. Lett. A 61
(1977), 81-82.
|
|