|
SIGMA 10 (2014), 031, 7 pages arXiv:1310.7664
https://doi.org/10.3842/SIGMA.2014.031
Contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rieffel
Nontrivial Deformation of a Trivial Bundle
Piotr M. Hajac a, b and Bartosz Zieliński c
a) Instytut Matematyczny, Polska Akademia Nauk, ul. Śniadeckich 8, 00-956 Warszawa, Poland
b) Katedra Metod Matematycznych Fizyki, Uniwersytet Warszawski, ul. Hoża 74, 00-682 Warszawa, Poland
c) Department of Computer Science, Faculty of Physics and Applied Informatics, University of Łódź, Pomorska 149/153 90-236 Łódź, Poland
Received October 29, 2013, in final form March 03, 2014; Published online March 27, 2014
Abstract
The ${\rm SU}(2)$-prolongation of the Hopf fibration $S^3\to S^2$ is a trivializable principal ${\rm SU}(2)$-bundle.
We present a noncommutative deformation of this bundle to a quantum principal ${\rm SU}_q(2)$-bundle that is not
trivializable.
On the other hand, we show that the ${\rm SU}_q(2)$-bundle is piecewise trivializable with respect to the closed
covering of $S^2$ by two hemispheres intersecting at the equator.
Key words:
quantum prolongations of principal bundles; piecewise trivializable quantum principal bundles.
pdf (353 kb)
tex (13 kb)
References
- Baum P.F., De Commer K., Hajac P.M., Free actions of compact quantum groups of
unital $C^*$-algebras, arXiv:1304.2812.
- Baum P.F., Hajac P.M., Local proof of algebraic characterization of free
actions, arXiv:1402.3024.
- Baum P.F., Hajac P.M., Matthes R., Szymański W., Noncommutative geometry
approach to principal and associated bundles, in Quantum Symmetry in
Noncommutative Geometry, to appear, math.DG/0701033.
- Brzeziński T., Hajac P.M., The Chern-Galois character,
C. R. Math. Acad. Sci. Paris 338 (2004), 113-116,
math.KT/0306436.
- Brzeziński T., Zieliński B., Quantum principal bundles over quantum
real projective spaces, J. Geom. Phys. 62 (2012),
1097-1107, arXiv:1105.5897.
- Günther R., Crossed products for pointed Hopf algebras, Comm.
Algebra 27 (1999), 4389-4410.
- Hajac P.M., Krähmer U., Matthes R., Zieliński B., Piecewise principal
comodule algebras, J. Noncommut. Geom. 5 (2011), 591-614,
arXiv:0707.1344.
- Hajac P.M., Matthes R., Sołtan P.M., Szymański W., Zieliński B.,
Hopf-Galois extensions and $C^*$ algebras, in Quantum Symmetry in
Noncommutative Geometry, to appear.
- Hajac P.M., Rudnik J., Zieliński B., Reductions of piecewise trivial comodule
algebras, arXiv:1101.0201.
- Kobayashi S., Nomizu K., Foundations of differential geometry. Vol. I,
Interscience Publishers, New York - London, 1963.
- Podleś P., Symmetries of quantum spaces. Subgroups and quotient spaces of
quantum ${\rm SU}(2)$ and ${\rm SO}(3)$ groups, Comm. Math.
Phys. 170 (1995), 1-20, hep-th/9402069.
- Schauenburg P., Galois objects over generalized Drinfeld doubles, with an
application to $u_q({\mathfrak{sl}}_2)$, J. Algebra 217
(1999), 584-598.
- Sołtan P.M., On actions of compact quantum groups, Illinois J.
Math. 55 (2011), 953-962, arXiv:1003.5526.
- Woronowicz S.L., Twisted ${\rm SU}(2)$ group. An example of a
non-commutative differential calculus, Publ. Res. Inst. Math. Sci.
23 (1987), 117-181.
|
|