|
SIGMA 10 (2014), 029, 14 pages arXiv:1103.6054
https://doi.org/10.3842/SIGMA.2014.029
Contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rieffel
On Projections in the Noncommutative 2-Torus Algebra
Michał Eckstein
Faculty of Mathematics and Computer Science, Jagellonian University, ul. Łojasiewicza 6, 30-348 Kraków, Poland
Received December 09, 2013, in final form March 16, 2014; Published online March 23, 2014
Abstract
We investigate a set of functional equations defining a projection in the noncommutative 2-torus algebra
$A_{\theta}$. The exact solutions of these provide various generalisations of the Powers-Rieffel projection.
By identifying the corresponding $K_0(A_{\theta})$ classes we get an insight into the structure of projections in
$A_{\theta}$.
Key words:
noncommutative torus; projections; noncommutative solitons.
pdf (464 kb)
tex (85 kb)
References
- Bars I., Kajiura H., Matsuo Y., Takayanagi T., Tachyon condensation on a
noncommutative torus, Phys. Rev. D 63 (2001), 086001,
8 pages, hep-th/0010101.
- Boca F.P., Projections in rotation algebras and theta functions, Comm.
Math. Phys. 202 (1999), 325-357, math.OA/9803134.
- Connes A., $C^*$ algèbres et géométrie différentielle,
C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A599-A604,
hep-th/0101093.
- Connes A., Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994.
- Connes A., Douglas M.R., Schwarz A., Noncommutative geometry and matrix theory:
compactification on tori, J. High Energy Phys. 1998 (1998),
no. 2, 003, 35 pages, hep-th/9711162.
- Eckstein M., Anomalies in noncommutative geometry, Master's Thesis,
Jagellonian University, 2010.
- Elliott G.A., Evans D.E., The structure of the irrational rotation
$C^*$-algebra, Ann. of Math. 138 (1993), 477-501.
- Exel R., Loring T.A., Invariants of almost commuting unitaries,
J. Funct. Anal. 95 (1991), 364-376.
- Frohman C., Gelca R., Skein modules and the noncommutative torus,
Trans. Amer. Math. Soc. 352 (2000), 4877-4888,
math.QA/9806107.
- Gracia-Bondía J.M., Várilly J.C., Figueroa H., Elements of
noncommutative geometry, Birkhäuser Advanced Texts, Birkhäuser Boston,
Inc., Boston, MA, 2001.
- Khalkhali M., Basic noncommutative geometry, EMS Series of Lectures in
Mathematics, European Mathematical Society (EMS), Zürich, 2009.
- Krajewski T., Schnabl M., Exact solitons on non-commutative tori,
J. High Energy Phys. 2001 (2001), no. 8, 002, 22 pages,
hep-th/0104090.
- Landi G., Lizzi F., Szabo R.J., Matrix quantum mechanics and soliton
regularization of noncommutative field theory, Adv. Theor. Math.
Phys. 8 (2004), 1-82, hep-th/0401072.
- Luef F., Projections in noncommutative tori and Gabor frames, Proc.
Amer. Math. Soc. 139 (2011), 571-582, arXiv:1003.3719.
- Perrot D., Anomalies and noncommutative index theory, in Geometric and
Topological Methods for Quantum Field Theory, Contemp. Math., Vol. 434, Amer. Math. Soc., Providence, RI, 2007, 125-160,
hep-th/0603209.
- Pimsner M., Voiculescu D., Exact sequences for $K$-groups and Ext-groups of
certain cross-product $C^*$-algebras, J. Operator Theory
4 (1980), 93-118.
- Rieffel M.A., $C^*$-algebras associated with irrational rotations,
Pacific J. Math. 93 (1981), 415-429.
- Rieffel M.A., The cancellation theorem for projective modules over irrational
rotation $C^*$-algebras, Proc. London Math. Soc. 47
(1983), 285-302.
- Rieffel M.A., Projective modules over higher-dimensional noncommutative tori,
Canad. J. Math. 40 (1988), 257-338.
- Seiberg N., Witten E., String theory and noncommutative geometry,
J. High Energy Phys. 1999 (1999), no. 9, 032, 93 pages,
hep-th/9908142.
- Várilly J.C., An introduction to noncommutative geometry, EMS Series of
Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2006.
|
|