|
SIGMA 10 (2014), 026, 29 pages arXiv:1310.7273
https://doi.org/10.3842/SIGMA.2014.026
Contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa
Symmetry Groups of $A_n$ Hypergeometric Series
Yasushi Kajihara
Department of Mathematics, Kobe University, Rokko-dai, Kobe 657-8501, Japan
Received September 30, 2013, in final form March 04, 2014; Published online March 18, 2014
Abstract
Structures of symmetries of transformations for Holman-Biedenharn-Louck $A_n$ hypergeometric series: $A_n$
terminating balanced ${}_4 F_3$ series and $A_n$ elliptic ${}_{10} E_9$ series are discussed.
Namely the description of the invariance groups and the classification all of possible transformations for each types of
$A_n$ hypergeometric series are given.
Among them, a ''periodic'' affine Coxeter group which seems to be new in the literature arises as an invariance group
for a class of $A_n$ ${}_4 F_3$ series.
Key words:
multivariate hypergeometric series; elliptic hypergeometric series; Coxeter groups.
pdf (519 kb)
tex (32 kb)
References
- Bailey W.N., Transformations of generalized hypergeometric series,
Proc. London Math. Soc. s2-29 (1929), 495-516.
- Bailey W.N., Generalized hypergeometric series, Cambridge Tracts in Mathematics
and Mathematical Physics, no. 32, Stechert-Hafner, Inc., New York, 1964.
- Beyer W.A., Louck J.D., Stein P.R., Group theoretical basis of some identities
for the generalized hypergeometric series, J. Math. Phys.
28 (1987), 497-508.
- Bourbaki N., Éléments de mathématique. Fasc. XXXIV. Groupes et
algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de
Tits. Chapitre V: Groupes engendrés par des réflexions.
Chapitre VI: Systèmes de racines, Actualités Scientifiques et
Industrielles, no. 1337, Hermann, Paris, 1968.
- Formichella M., Green R.M., Stade E., Coxeter group actions on ${}_4F_3(1)$
hypergeometric series, Ramanujan J. 24 (2011), 93-128,
arXiv:0810.0518.
- Frenkel I.B., Turaev V.G., Elliptic solutions of the Yang-Baxter equation
and modular hypergeometric functions, in The Arnold-Gelfand Mathematical
Seminars, Birkhäuser Boston, Boston, MA, 1997, 171-204.
- Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of
Mathematics and its Applications, Vol. 96, 2nd ed., Cambridge University
Press, Cambridge, 2004.
- Hardy G.H., Ramanujan: twelve lectures on subjects suggested by his life and
work, Chelsea Publishing Company, New York, 1959.
- Holman W.J., Summation theorems for hypergeometric series in ${\rm U}(n)$,
SIAM J. Math. Anal. 11 (1980), 523-532.
- Holman W.J., Biedenharn L.C., Louck J.D., On hypergeometric series well-poised
in ${\rm SU}(n)$, SIAM J. Math. Anal. 7 (1976), 529-541.
- Humphreys J.E., Reflection groups and Coxeter groups, Cambridge
Studies in Advanced Mathematics, Vol. 29, Cambridge University Press,
Cambridge, 1990.
- Iwahori N., Matsumoto H., On some Bruhat decomposition and the structure of
the Hecke rings of ${\mathfrak p}$-adic Chevalley groups, Inst.
Hautes Études Sci. Publ. Math. (1965), 5-48.
- Kajihara Y., Some remarks on multiple Sears transformations, in $q$-Series
with Applications to Combinatorics, Number Theory, and Physics (Urbana,
IL, 2000), Contemp. Math., Vol. 291, Amer. Math. Soc., Providence,
RI, 2001, 139-145.
- Kajihara Y., Euler transformation formula for multiple basic hypergeometric
series of type $A$ and some applications, Adv. Math. 187
(2004), 53-97.
- Kajihara Y., Multiple generalizations of $q$-series identities and related
formulas, in Partitions, $q$-Series, and Modular Forms, Dev.
Math., Vol. 23, Springer, New York, 2012, 159-180.
- Kajihara Y., Multiple basic hypergeometric transformation formulas arising from
the balanced duality transformation, arXiv:1310.1984.
- Kajihara Y., Noumi M., Multiple elliptic hypergeometric series. An approach
from the Cauchy determinant, Indag. Math. (N.S.) 14
(2003), 395-421, math.CA/0306219.
- Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., ${}_{10}E_9$ solution
to the elliptic Painlevé equation, J. Phys. A: Math. Gen.
36 (2003), L263-L272.
- Kirillov A.N., Clebsch-Gordan quantum coefficients, J. Sov. Math.
53 (1991), 264-276.
- Kirillov A.N., Reshetikhin N.Yu., Representations of the algebra ${U}_q({\rm sl}(2)),q$-orthogonal polynomials and invariants of links, in
Infinite-Dimensional Lie Algebras and Groups (Luminy-Marseille, 1988),
Adv. Ser. Math. Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989,
285-339.
- Krattenthaler C., Rivoal T., How can we escape Thomae's relations?,
J. Math. Soc. Japan 58 (2006), 183-210,
math.CA/0502276.
- Krattenthaler C., Srinivasa Rao K., On group theoretical aspects,
hypergeometric transformations and symmetries of angular momentum
coefficients, in Symmetries in Science XI, Kluwer Acad. Publ., Dordrecht,
2004, 355-376.
- Lievens S., Van der Jeugt J., Symmetry groups of Bailey's transformations for
$_{10}\phi_9$-series, J. Comput. Appl. Math. 206 (2007),
498-519.
- Milne S.C., Transformations of ${\rm U}(n+1)$ multiple basic hypergeometric
series, in Physics and Combinatorics 1999 (Nagoya), World Sci. Publ., River
Edge, NJ, 2001, 201-243.
- Milne S.C., Newcomb J.W., ${\rm U}(n)$ very-well-poised $_{10}\phi_9$
transformations, J. Comput. Appl. Math. 68 (1996),
239-285.
- Mishev I.D., Coxeter group actions on Saalschützian ${}_4F_3(1)$ series
and very-well-poised ${}_7F_6(1)$ series, J. Math. Anal. Appl.
385 (2012), 1119-1133, arXiv:1008.1011.
- Rains E.M., Recurrences for elliptic hypergeometric integrals, in Elliptic
Integrable Systems, Rokko Lectures in Mathematics, Vol. 18, Editors
M. Noumi, K. Takasaki, Kobe University, 2005, 183-199,
math.CA/0504285.
- Rains E.M., Transformations of elliptic hypergeometric integrals, Ann.
of Math. 171 (2010), 169-243, math.QA/0309252.
- Rosengren H., Elliptic hypergeometric series on root systems, Adv.
Math. 181 (2004), 417-447, math.CA/0207046.
- Rosengren H., New transformations for elliptic hypergeometric series on the
root system $A_n$, Ramanujan J. 12 (2006), 155-166,
math.CA/0305379.
- Sakai H., Rational surfaces associated with affine root systems and geometry of
the Painlevé equations, Comm. Math. Phys. 220 (2001),
165-229.
- Shephard G.C., Todd J.A., Finite unitary reflection groups, Canadian J.
Math. 6 (1954), 274-304.
- Thomae J., Ueber die Functionen, welche durch Reihen von der Form dargestellt
werden $1 + \frac{p}{1} \frac{p'}{q'} \frac{p''}{q''} +\frac{p}{1}
\frac{p+1}{2} \frac{p'}{q'} \frac{p'+1}{q' +1} \frac{p''}{q''} \frac{p''+
1}{q'' + 1}+ \cdots $, J. Reine Angew. Math. 87 (1879),
26-73.
- van de Bult F.J., Rains E.M., Stokman J.V., Properties of generalized
univariate hypergeometric functions, Comm. Math. Phys. 275
(2007), 37-95, math.CA/0607250.
- Van der Jeugt J., Srinivasa Rao K., Invariance groups of transformations of
basic hypergeometric series, J. Math. Phys. 40 (1999),
6692-6700.
- Whipple F.J.W., A group of generalized hypergeometric series: relations between
120 allied series of the type $F[a, b, c; d, e]$, Proc. London Math.
Soc. s2-23 (1925), 104-114.
- Whittaker E.T., Watson G.N., A course of modern analysis. An introduction to
the general theory of infinite processes and of analytic functions; with an
account of the principal transcendental functions, Cambridge Mathematical
Library, Cambridge University Press, Cambridge, 1996.
|
|