|
SIGMA 10 (2014), 023, 13 pages arXiv:1308.4584
https://doi.org/10.3842/SIGMA.2014.023
Contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa
Dispersionless BKP Hierarchy and Quadrant Löwner Equation
Takashi Takebe
Faculty of Mathematics, National Research University - Higher School of Economics, 7 Vavilova Str., Moscow, 117312 Russia
Received August 23, 2013, in final form March 10, 2014; Published online March 14, 2014
Abstract
We show that N-variable reduction of the dispersionless BKP hierarchy is described by a Löwner type
equation for the quadrant.
Key words:
dBKP hierarchy; quadrant Löwner equation; N-variable reduction.
pdf (388 kb)
tex (34 kb)
References
- Abate M., Bracci F., Contreras M.D., Díaz-Madrigal S., The evolution of
Loewner's differential equations, Eur. Math. Soc. Newsl. 78
(2010), 31-38.
- Błaszak M., Classical R-matrices on Poisson algebras and related
dispersionless systems, Phys. Lett. A 297 (2002), 191-195.
- Bogdanov L.V., Konopelchenko B.G., On dispersionless BKP hierarchy and its
reductions, J. Nonlinear Math. Phys. 12 (2005), suppl. 1,
64-73, nlin.SI/0411046.
- Chen Y.-T., Tu M.-H., A note on the dispersionless BKP hierarchy,
J. Phys. A: Math. Gen. 39 (2006), 7641-7655.
- Date E., Kashiwara M., Miwa T., Transformation groups for soliton equations.
II. Vertex operators and τ functions, Proc. Japan Acad.
Ser. A Math. Sci. 57 (1981), 387-392.
- Del Monaco A., Gumenyuk P., Chordal Loewner equation, arXiv:1302.0898.
- Duren P.L., Univalent functions, Grundlehren der Mathematischen
Wissenschaften, Vol. 259, Springer-Verlag, New York, 1983.
- Gibbons J., Tsarev S.P., Reductions of the Benney equations, Phys.
Lett. A 211 (1996), 19-24.
- Gibbons J., Tsarev S.P., Conformal maps and reductions of the Benney
equations, Phys. Lett. A 258 (1999), 263-271.
- Kamke E., Differentialgleichungen. Lösungsmethoden und Lösungen,
Mathematik und ihre Anwendungen in Physik und Technik, Reihe A, Bd. 18,
Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1959.
- Kodama Y., Gibbons J., A method for solving the dispersionless KP hierarchy
and its exact solutions. II, Phys. Lett. A 135 (1989),
167-170.
- Kufarev P.P., Sobolev V.V., Sporyševa L.V., A certain method of
investigation of extremal problems for functions that are univalent in the
half-plane, Trudy Tomsk. Gos. Univ. Ser. Meh.-Mat. 200
(1968), 142-164.
- Kupershmidt B.A., Deformations of integrable systems, Proc. Roy. Irish
Acad. Sect. A 83 (1983), 45-74.
- Mañas M., S-functions, reductions and hodograph solutions of the
rth dispersionless modified KP and Dym hierarchies,
J. Phys. A: Math. Gen. 37 (2004), 11191-11221,
nlin.SI/0405028.
- Mañas M., Martínez Alonso L., Medina E., Reductions and hodograph
solutions of the dispersionless KP hierarchy, J. Phys. A: Math.
Gen. 35 (2002), 401-417.
- Odesskii A.V., Sokolov V.V., Systems of Gibbons-Tsarev type and integrable
3-dimensional models, arXiv:0906.3509.
- Odesskii A.V., Sokolov V.V., Integrable (2+1)-dimensional systems of
hydrodynamic type, Theoret. and Math. Phys. 163 (2010),
549-586, arXiv:1009.2778.
- Pavlov M.V., The Kupershmidt hydrodynamic chains and lattices, Int.
Math. Res. Not. 2006 (2006), Art. ID 46987, 43 pages,
nlin.SI/0604049.
- Pommerenke C., Univalent functions, Studia Mathematica/Mathematische
Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975.
- Schramm O., Scaling limits of loop-erased random walks and uniform spanning
trees, Israel J. Math. 118 (2000), 221-288,
math.PR/9904022.
- Takasaki K., Quasi-classical limit of BKP hierarchy and W-infinity
symmetries, Lett. Math. Phys. 28 (1993), 177-185,
hep-th/9301090.
- Takasaki K., Dispersionless Hirota equations of two-component BKP
hierarchy, SIGMA 2 (2006), 057, 22 pages,
nlin.SI/0601063.
- Takasaki K., Takebe T., Integrable hierarchies and dispersionless limit,
Rev. Math. Phys. 7 (1995), 743-808,
hep-th/9405096.
- Takasaki K., Takebe T., Radial Löwner equation and dispersionless cmKP
hierarchy, nlin.SI/0601063.
- Takasaki K., Takebe T., Löwner equations, Hirota equations and reductions
of the universal Whitham hierarchy, J. Phys. A: Math. Theor.
41 (2008), 475206, 27 pages, arXiv:0808.1444.
- Takebe T., Teo L.-P., Zabrodin A., Löwner equations and dispersionless
hierarchies, J. Phys. A: Math. Gen. 39 (2006),
11479-11501, math.CV/0605161.
- Teo L.-P., Analytic functions and integrable hierarchies - characterization of
tau functions, Lett. Math. Phys. 64 (2003), 75-92,
hep-th/0305005.
- Tsarëv S.P., The geometry of Hamiltonian systems of hydrodynamic type.
The generalized hodograph method, Math. USSR-Izv. 37
(1991), 397-419.
|
|