|
SIGMA 10 (2014), 017, 18 pages arXiv:1306.2470
https://doi.org/10.3842/SIGMA.2014.017
Dynamics of an Inverting Tippe Top
Stefan Rauch-Wojciechowski and Nils Rutstam
Department of Mathematics, Linköping University, Linköping, Sweden
Received September 05, 2013, in final form February 18, 2014; Published online February 27, 2014
Abstract
The existing results about inversion of a tippe top (TT) establish stability of asymptotic
solutions and prove inversion by using the LaSalle theorem.
Dynamical behaviour of inverting solutions has only been explored numerically and with the use of certain
perturbation techniques.
The aim of this paper is to provide analytical arguments showing oscillatory behaviour of TT through the
use of the main equation for the TT.
The main equation describes time evolution of the inclination angle $\theta(t)$ within an effective
potential $V(\cos\theta,D(t),\lambda)$ that is deforming during the inversion.
We prove here that $V(\cos\theta,D(t),\lambda)$ has only one minimum which (if Jellett's integral is above
a threshold value
$\lambda>\lambda_{\text{thres}}=\frac{\sqrt{mgR^3I_3\alpha}(1+\alpha)^2}{\sqrt{1+\alpha-\gamma}}$ and
$1-\alpha^2$ < $\gamma=\frac{I_1}{I_3}$ < $1$ holds) moves during the inversion from a neighbourhood of $\theta=0$
to a neighbourhood of $\theta=\pi$.
This allows us to conclude that $\theta(t)$ is an oscillatory function.
Estimates for a maximal value of the oscillation period of $\theta(t)$ are given.
Key words:
tippe top; rigid body; nonholonomic mechanics; integrals of motion; gliding friction.
pdf (585 kb)
tex (129 kb)
References
- Bou-Rabee N.M., Marsden J.E., Romero L.A., Tippe top inversion as a
dissipation-induced instability, SIAM J. Appl. Dyn. Syst. 3
(2004), 352-377.
- Chaplygin S.A., On a motion of a heavy body of revolution on a horizontal
plane, Regul. Chaotic Dyn. 7 (2002), 119-130.
- Cohen R.J., The tippe top revisited, Amer. J. Phys. 45
(1977), 12-17.
- Del Campo A.R., Tippe top (topsy-turnee top) continued, Amer. J. Phys.
23 (1955), 544-545.
- Ebenfeld S., Scheck F., A new analysis of the tippe top: asymptotic states and
Liapunov stability, Ann. Physics 243 (1995), 195-217,
chao-dyn/9501008.
- Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher
transcendental functions, Vol. II, McGraw-Hill, New York - Toronto -
London, 1953.
- Glad S.T., Petersson D., Rauch-Wojciechowski S., Phase space of rolling
solutions of the tippe top, SIGMA 3 (2007), 041, 14 pages,
nlin.SI/0703016.
- Jones E., Oliphant T., Peterson P., Open source scientific tools for Python,
available at http://www.scipy.org.
- Karapetyan A.V., Qualitative investigation of the dynamics of a top on a plane
with friction, J. Appl. Math. Mech. 55 (1991), 563-565.
- Karapetyan A.V., Rubanovskii V.N., On the stability of stationary motions of
non-conservative mechanical systems, J. Appl. Math. Mech.
50 (1986), 30-35.
- Or A.C., The dynamics of a tippe top, SIAM J. Appl. Math. 54
(1994), 597-609.
- Rauch-Wojciechowski S., What does it mean to explain the rising of the tippe
top?, Regul. Chaotic Dyn. 13 (2008), 316-331.
- Rauch-Wojciechowski S., Sköldstam M., Glad T., Mathematical analysis of the
tippe top, Regul. Chaotic Dyn. 10 (2005), 333-362.
- Rutstam N., Study of equations for tippe top and related rigid bodies,
Linköping Studies in Science and Technology, Theses No. 1106,
Matematiska Institutionen, Linköpings Universitet, 2010, available at
http://swepub.kb.se/bib/swepub:oai:DiVA.org:liu-60835.
- Rutstam N., Tippe top equations and equations for the related mechanical
systems, SIGMA 8 (2012), 019, 22 pages, arXiv:1204.1123.
- Rutstam N., High frequency behavior of a rolling ball and simplification of the
separation equation, Regul. Chaotic Dyn. 18 (2013),
226-236.
- Sturm C., Mémoire sur la résolution des équations numériques,
Bull. de Ferussac 11 (1829), 419-425.
- Ueda T., Sasaki K., Watanabe S., Motion of the tippe top: gyroscopic balance
condition and stability, SIAM J. Appl. Dyn. Syst. 4 (2005),
1159-1194, physics/0507198.
|
|