Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 008, 35 pages      arXiv:1304.1646      https://doi.org/10.3842/SIGMA.2014.008

Systems of Differential Operators and Generalized Verma Modules

Toshihisa Kubo
Graduate School of Mathematical Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan

Received April 08, 2013, in final form January 17, 2014; Published online January 24, 2014

Abstract
In this paper we close the cases that were left open in our earlier works on the study of conformally invariant systems of second-order differential operators for degenerate principal series. More precisely, for these cases, we find the special values of the systems of differential operators, and determine the standardness of the homomorphisms between the generalized Verma modules, that come from the conformally invariant systems.

Key words: conformally invariant systems; quasi-invariant differential operators; intertwining differential operators; real flag manifolds; generalized Verma modules; standard maps.

pdf (692 kb)   tex (40 kb)

References

  1. Barchini L., Kable A.C., Zierau R., Conformally invariant systems of differential equations and prehomogeneous vector spaces of Heisenberg parabolic type, Publ. Res. Inst. Math. Sci. 44 (2008), 749-835.
  2. Barchini L., Kable A.C., Zierau R., Conformally invariant systems of differential operators, Adv. Math. 221 (2009), 788-811.
  3. Baston R.J., Eastwood M.G., The Penrose transform. Its interaction with representation theory, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1989.
  4. Boe B.D., Homomorphisms between generalized Verma modules, Trans. Amer. Math. Soc. 288 (1985), 791-799.
  5. Boe B.D., Collingwood D.H., Intertwining operators between holomorphically induced modules, Pacific J. Math. 124 (1986), 73-84.
  6. Bourbaki N., Éléments de mathématique. Groupes et algèbres de Lie, Chapitres 4-6, Masson, Paris, 1981.
  7. Collingwood D.H., Shelton B., A duality theorem for extensions of induced highest weight modules, Pacific J. Math. 146 (1990), 227-237.
  8. Davidson M.G., Enright T.J., Stanke R.J., Differential operators and highest weight representations, Mem. Amer. Math. Soc. 94 (1991), no. 455, iv+102 pages.
  9. Dobrev V., Canonical construction of differential operators intertwining representations of real semisimple, Rep. Math. Phys. 25 (1988), 159-181.
  10. Dobrev V., Invariant differential operators for non-compact Lie algebras parabolically related to conformal Lie algebras, J. High Energy Phys. 2013 (2013), no. 2, 015, 41 pages, arXiv:1208.0409.
  11. Dobrev V., Invariant differential operators for non-compact Lie groups: the reduced SU(3,3) multiplets, arXiv:1312.5998.
  12. Ehrenpreis L., Hypergeometric functions, in Algebraic Analysis, Vol. I, Academic Press, Boston, MA, 1988, 85-128.
  13. Harris M., Jakobsen H.P., Singular holomorphic representations and singular modular forms, Math. Ann. 259 (1982), 227-244.
  14. Huang J.S., Intertwining differential operators and reducibility of generalized Verma modules, Math. Ann. 297 (1993), 309-324.
  15. Jakobsen H.P., Basic covariant differential operators on Hermitian symmetric spaces, Ann. Sci. École Norm. Sup. 18 (1985), 421-436.
  16. Johnson K.D., Korányi A., Reimann H.M., Equivariant first order differential operators for parabolic geometries, Indag. Math. (N.S.) 14 (2003), 385-393.
  17. Juhl A., Families of conformally covariant differential operators, Q-curvature and holography, Progress in Mathematics, Vol. 275, Birkhäuser Verlag, Basel, 2009.
  18. Kable A.C., K-finite solutions to conformally invariant systems of differential equations, Tohoku Math. J. 63 (2011), 539-559.
  19. Kable A.C., Conformally invariant systems of differential equations on flag manifolds for G2 and their K-finite solutions, J. Lie Theory 22 (2012), 93-136.
  20. Kable A.C., The Heisenberg ultrahyperbolic equation: K-finite and polynomial solutions, Kyoto J. Math. 52 (2012), 839-894.
  21. Kable A.C., The Heisenberg ultrahyperbolic equation: the basic solutions as distributions, Pacific J. Math. 258 (2012), 165-197.
  22. Kable A.C., On certain conformally invariant systems of differential equations, New York J. Math. 19 (2013), 189-251.
  23. Klimyk A.U., Decomposition of a direct product of irreducible representations of a semisimple Lie algebra into a direct sum of irreducible representations, in Thirteen Papers on Algebra and Analysis, Amer. Math. Soc. Translations, Vol. 76, Amer. Math. Soc., Providence, R.I., 1968, 63-74.
  24. Knapp A.W., Lie groups beyond an introduction, Progress in Mathematics, Vol. 140, 2nd ed., Birkhäuser Boston Inc., Boston, MA, 2002.
  25. Knapp A.W., Nilpotent orbits and some small unitary representations of indefinite orthogonal groups, J. Funct. Anal. 209 (2004), 36-100.
  26. Kobayashi T., Ørsted B., Analysis on the minimal representation of O(p,q). I. Realization via conformal geometry, Adv. Math. 180 (2003), 486-512, math.RT/0111083.
  27. Kobayashi T., Ørsted B., Analysis on the minimal representation of O(p,q). II. Branching laws, Adv. Math. 180 (2003), 513-550, math.RT/0111085.
  28. Kobayashi T., Ørsted B., Analysis on the minimal representation of O(p,q). III. Ultrahyperbolic equations on Rp−1,q−1, Adv. Math. 180 (2003), 551-595, math.RT/0111086.
  29. Kobayashi T., Ørsted B., Somberg P., Soucek V., Branching laws for Verma modules and applications in parabolic geometry. I, arXiv:1305.6040.
  30. Kobayashi T., Pevzner M., Rankin-Cohen operators for symmetric pairs, arXiv:1301.2111.
  31. Korányi A., Reimann H.M., Equivariant first order differential operators on boundaries of symmetric spaces, Invent. Math. 139 (2000), 371-390.
  32. Kostant B., Verma modules and the existence of quasi-invariant differential operators, in Non-Commutative Harmonic Analysis (Actes Colloq., Marseille-Luminy, 1974), Lecture Notes in Math., Vol. 446, Springer, Berlin, 1975, 101-128.
  33. Kubo T., A system of third-order differential operators conformally invariant under sl(3,C) and so(8,C), Pacific J. Math. 253 (2011), 439-453, arXiv:1104.1999.
  34. Kubo T., On the homomorphisms between the generalized Verma modules arising from conformally invariant systems, J. Lie Theory 23 (2013), 847-883, arXiv:1209.5516.
  35. Kubo T., Special values for conformally invariant systems associated to maximal parabolics of quasi-Heisenberg type, Trans. Amer. Math. Soc., to appear, arXiv:1209.1861.
  36. Lepowsky J., A generalization of the Bernstein-Gelfand-Gelfand resolution, J. Algebra 49 (1977), 496-511.
  37. Matumoto H., The homomorphisms between scalar generalized Verma modules associated to maximal parabolic subalgebras, Duke Math. J. 131 (2006), 75-119, math.RT/0309454.
  38. Matumoto H., On the homomorphisms between scalar generalized Verma modules, arXiv:1205.6748.
  39. Somberg P., The F-method and a branching problem for generalized Verma modules associated to (Lie G2, so(7)), arXiv:1303.7311.
  40. Wallach N.R., The analytic continuation of the discrete series. II, Trans. Amer. Math. Soc. 251 (1979), 19-37.


Previous article  Next article   Contents of Volume 10 (2014)