|
SIGMA 10 (2014), 006, 18 pages arXiv:1310.6988
https://doi.org/10.3842/SIGMA.2014.006
Contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa
The Master T-Operator for Inhomogeneous XXX Spin Chain and mKP Hierarchy
Anton Zabrodin a, b, c, d
a) Institute of Biochemical Physics, 4 Kosygina, 119334, Moscow, Russia
b) ITEP, 25 B. Cheremushkinskaya, 117218, Moscow, Russia
c) National Research University Higher School of Economics, 20 Myasnitskaya Ulitsa, Moscow 101000, Russia
d) MIPT, Institutskii per. 9, 141700, Dolgoprudny, Moscow region, Russia
Received October 18, 2013, in final form January 08, 2014; Published online January 11, 2014
Abstract
Following the approach of [Alexandrov A., Kazakov V., Leurent S., Tsuboi Z., Zabrodin A., J. High Energy Phys.
2013 (2013), no. 9, 064, 65 pages, arXiv:1112.3310], we show how to construct the master $T$-operator
for the quantum inhomogeneous ${\rm GL}(N)$ $XXX$ spin chain with twisted boundary conditions.
It satisfies the bilinear identity and Hirota equations for the classical mKP hierarchy.
We also characterize the class of solutions to the mKP hierarchy that correspond to eigenvalues of the master $T$-operator
and study dynamics of their zeros as functions of the spectral parameter. This implies a remarkable
connection between the quantum spin chain and the classical Ruijsenaars-Schneider system of particles.
Key words:
quantum integrable spin chains; classical many-body systems; quantum-classical correspondence; master $T$-operator; tau-function.
pdf (446 kb)
tex (28 kb)
References
- Airault H., McKean H.P., Moser J., Rational and elliptic solutions of the
Korteweg-de Vries equation and a related many-body problem,
Comm. Pure Appl. Math. 30 (1977), 95-148.
- Alexandrov A., Kazakov V., Leurent S., Tsuboi Z., Zabrodin A., Classical
tau-function for quantum spin chains, J. High Energy Phys.
2013 (2013), no. 9, 064, 65 pages, arXiv:1112.3310.
- Alexandrov A., Leurent S., Tsuboi Z., Zabrodin A., The master $T$-operator for
the Gaudin model and the KP hierarchy, arXiv:1306.1111.
- Bazhanov V.V., Reshetikhin N., Restricted solid-on-solid models connected with
simply laced algebras and conformal field theory, J. Phys. A: Math.
Gen. 23 (1990), 1477-1492.
- Cherednik I.V., An analogue of the character formula for Hecke algebras,
Funct. Anal. Appl. 21 (1987), 172-174.
- Date E., Kashiwara M., Jimbo M., Miwa T., Transformation groups for soliton
equations, in Nonlinear Integrable Systems - Classical Theory and Quantum
Theory (Kyoto, 1981), World Sci. Publishing, Singapore, 1983, 39-119.
- Gaiotto D., Koroteev P., On three dimensional quiver gauge theories and
integrability, J. High Energy Phys. 2013 (2013), no. 5,
126, 59 pages, arXiv:1304.0779.
- Gorsky A., Zabrodin A., Zotov A., Spectrum of quantum transfer matrices via
classical many-body systems, J. High Energy Phys., to appear,
arXiv:1310.6958.
- Harnad J., Ènol'skii V.Z., Schur function expansion of KP
$\tau$-functions associated with algebraic curves, Russ. Math.
Surv. 66 (2011), 767-807, arXiv:1012.3152.
- Hikami K., Kulish P.P., Wadati M., Construction of integrable spin systems with
long-range interactions, J. Phys. Soc. Japan 61 (1992),
3071-3076.
- Hirota R., Discrete analogue of a generalized Toda equation, J. Phys.
Soc. Japan 50 (1981), 3785-3791.
- Iliev P., Rational Ruijsenaars-Schneider hierarchy and bispectral
difference operators, Phys. D 229 (2007), 184-190,
math-ph/0609011.
- Jimbo M., Miwa T., Solitons and infinite-dimensional Lie algebras,
Publ. Res. Inst. Math. Sci. 19 (1983), 943-1001.
- Kazakov V., Leurent S., Tsuboi Z., Baxter's $Q$-operators and operatorial
Bäcklund flow for quantum (super)-spin chains, Comm. Math. Phys.
311 (2012), 787-814, arXiv:1010.4022.
- Kazakov V., Sorin A., Zabrodin A., Supersymmetric Bethe ansatz and Baxter
equations from discrete Hirota dynamics, Nuclear Phys. B
790 (2008), 345-413, hep-th/0703147.
- Kazakov V., Vieira P., From characters to quantum (super)spin chains via
fusion, J. High Energy Phys. 2008 (2008), no. 10, 050,
31 pages, arXiv:0711.2470.
- Krichever I., Rational solutions of the Zakharov-Shabat equations and
completely integrable systems of $N$ particles on a line, J. Sov.
Math. 21 (1983), 335-345.
- Krichever I., General rational reductions of the Kadomtsev-Petviashvili
hierarchy and their symmetries, Funct. Anal. Appl. 29
(1995), 75-80.
- Krichever I., Lipan O., Wiegmann P., Zabrodin A., Quantum integrable models and
discrete classical Hirota equations, Comm. Math. Phys.
188 (1997), 267-304, hep-th/9604080.
- Krichever I., Zabrodin A., Spin generalization of the
Ruijsenaars-Schneider model, the nonabelian two-dimensionalized Toda
lattice, and representations of the Sklyanin algebra, Russ. Math.
Surv. 50 (1995), 1101-1150, hep-th/9505039.
- Kuniba A., Nakanishi T., Suzuki J., Functional relations in solvable lattice
models. I. Functional relations and representation theory,
Internat. J. Modern Phys. A 9 (1994), 5215-5266,
hep-th/9309137.
- Kuniba A., Ohta Y., Suzuki J., Quantum Jacobi-Trudi and Giambelli
formulae for $U_q(B^{(1)}_r)$ from the analytic Bethe ansatz,
J. Phys. A: Math. Gen. 28 (1995), 6211-6226,
hep-th/9506167.
- Macdonald I.G., Symmetric functions and Hall polynomials, 2nd ed., Oxford
Mathematical Monographs, Oxford Science Publications, The Clarendon Press,
Oxford University Press, New York, 1995.
- Miwa T., On Hirota's difference equations, Proc. Japan Acad. Ser. A
Math. Sci. 58 (1982), 9-12.
- Mukhin E., Tarasov V., Varchenko A., Bethe subalgebras of the group algebra of
the symmetric group, arXiv:1004.4248.
- Mukhin E., Tarasov V., Varchenko A., Gaudin Hamiltonians generate the Bethe
algebra of a tensor power of the vector representation of
$\mathfrak{gl}_N$, St. Petersburg Math. J. 22 (2011),
463-472, arXiv:0904.2131.
- Mukhin E., Tarasov V., Varchenko A., KZ characteristic variety as the zero
set of classical Calogero-Moser Hamiltonians, SIGMA
8 (2012), 072, 11 pages, arXiv:1201.3990.
- Mukhin E., Tarasov V., Varchenko A., Spaces of quasi-exponentials and
representations of the Yangian $Y(gl_N)$, arXiv:1303.1578.
- Nekrasov N., Rosly A., Shatashvili S., Darboux coordinates, Yang-Yang
functional, and gauge theory, Nuclear Phys. B Proc. Suppl.
216 (2011), 69-93, arXiv:1103.3919.
- Nijhoff F.W., Ragnisco O., Kuznetsov V.B., Integrable time-discretisation of
the Ruijsenaars-Schneider model, Comm. Math. Phys. 176
(1996), 681-700, hep-th/9412170.
- Orlov A.Y., Shiota T., Schur function expansion for normal matrix model and
associated discrete matrix models, Phys. Lett. A 343
(2005), 384-396, math-ph/0501017.
- Ruijsenaars S.N.M., Schneider H., A new class of integrable systems and its
relation to solitons, Ann. Physics 170 (1986), 370-405.
- Sato M., Sato Y., Soliton equations as dynamical systems on
infinite-dimensional Grassmann manifold, in Nonlinear Partial Differential
Equations in Applied Science (Tokyo, 1982), North-Holland Math.
Stud., Vol. 81, North-Holland, Amsterdam, 1983, 259-271.
- Shiota T., Calogero-Moser hierarchy and KP hierarchy, J. Math.
Phys. 35 (1994), 5844-5849, hep-th/9402021.
- Sklyanin E.K., Quantum inverse scattering method. Selected topics, in Quantum
Group and Quantum Integrable Systems, Nankai Lectures Math. Phys., World Sci.
Publ., River Edge, NJ, 1992, 63-97, hep-th/9211111.
- Sklyanin E.K., Separation of variables. New trends, Progr. Theoret.
Phys. Suppl. 118 (1995), 35-60, solv-int/9504001.
- Wilson G., Collisions of Calogero-Moser particles and an adelic
Grassmannian, Invent. Math. 133 (1998), 1-41.
- Zabrodin A., Discrete Hirota's equation in quantum integrable models,
Internat. J. Modern Phys. B 11 (1997), 3125-3158,
hep-th/9610039.
- Zabrodin A., The Hirota equation and the Bethe ansatz, Theoret. and
Math. Phys. 116 (1998), 782-819.
- Zabrodin A., Bäcklund transformation for the Hirota difference equation,
and the supersymmetric Bethe ansatz, Theoret. and Math. Phys.
155 (2008), 567-584, arXiv:0705.4006.
- Zabrodin A., Hirota equation and Bethe ansatz in integrable models,
Suuri-kagaku J. (2013), no. 596, 7-12, arXiv:1211.4428.
- Zabrodin A., The master $T$-operator for vertex models with trigonometric
$R$-matrices as classical $\tau$-function, Theoret. and Math. Phys.
171 (2013), 52-67, arXiv:1205.4152.
|
|