Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 10 (2014), 003, 10 pages      arXiv:1304.6550      https://doi.org/10.3842/SIGMA.2014.003

Global Embedding of the Reissner-Nordström Metric in the Flat Ambient Space

Sergey A. Paston and Anton A. Sheykin
Saint Petersburg State University, St. Petersburg, Russia

Received November 22, 2013, in final form January 03, 2014; Published online January 07, 2014

Abstract
We study isometric embeddings of non-extremal Reissner-Nordström metric describing a charged black hole. We obtain three new embeddings in the flat ambient space with minimal possible dimension. These embeddings are global, i.e. corresponding surfaces are smooth at all values of radius, including horizons. Each of the given embeddings covers one instance of the regions outside the horizon, one instance between the horizons and one instance inside the internal horizon. The lines of time for these embeddings turn out to be more complicated than circles or hyperbolas.

Key words: isometric embedding; global embedding Minkowski space; GEMS; Reissner-Nordström metric; charged black hole.

pdf (373 kb)   tex (22 kb)

References

  1. Bandos I.A., String-like description of gravity and possible applications for F-theory, Modern Phys. Lett. A 12 (1997), 799-810, hep-th/9608093.
  2. Banerjee R., Majhi B.R., A new global embedding approach to study Hawking and Unruh effects, Phys. Lett. B 690 (2010), 83-86, arXiv:1002.0985.
  3. Chen H.Z., Tian Y., Note on the generalization of the global embedding Minkowski spacetime approach, Phys. Rev. D 71 (2005), 024012, 4 pages, gr-qc/0410077.
  4. Collinson C.D., Embeddings of the plane-fronted waves and other space-time, J. Math. Phys. 9 (1968), 403-410.
  5. Deser S., Levin O., Accelerated detectors and temperature in (anti-) de Sitter spaces, Classical Quantum Gravity 14 (1997), L163-L168, gr-qc/9706018.
  6. Deser S., Levin O., Equivalence of Hawking and Unruh temperatures and entropies through flat space embeddings, Classical Quantum Gravity 15 (1998), L85-L87, hep-th/9806223.
  7. Deser S., Levin O., Mapping Hawking into Unruh thermal properties, Phys. Rev. D 59 (1999), 064004, 7 pages, hep-th/9809159.
  8. Deser S., Pirani F.A.E., Robinson D.C., New embedding model of general relativity, Phys. Rev. D 14 (1976), 3301-3303.
  9. Ferraris M., Francaviglia M., Algebraic isometric embeddings of charged spherically symmetric space-times, Gen. Relativity Gravitation 12 (1980), 791-804.
  10. Fronsdal C., Completion and embedding of the Schwarzschild solution, Phys. Rev. 116 (1959), 778-781.
  11. Fujitani T., Ikeda M., Matsumoto M., On the imbedding of the Schwarzschild space-time. I, J. Math. Kyoto Univ. 1 (1961), 43-61.
  12. Giblin Jr. J.T., Marolf D., Garvey R., Spacetime embedding diagrams for spherically symmetric black holes, Gen. Relativity Gravitation 36 (2004), 83-99, gr-qc/0305102.
  13. Goenner H.F., Local isometric embedding of Riemannian manifolds and Einstein's theory of gravitation, in General Relativity and Gravitation, Vol. 1, Plenum, New York, 1980, 441-468.
  14. Griffiths J.B., Podolský J., Exact space-times in Einstein's general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2009.
  15. Hong S.T., Complete higher dimensional global embedding structures of various black holes, Gen. Relativity Gravitation 36 (2004), 1919-1929, gr-qc/0310118.
  16. Jacob U., Piran T., Embedding the Reissner-Nordström spacetime in Euclidean and Minkowski spaces, Classical Quantum Gravity 23 (2006), 4035-4045, gr-qc/0605104.
  17. Karasik D., Davidson A., Geodetic brane gravity, Phys. Rev. D 67 (2003), 064012, 17 pages, gr-qc/0207061.
  18. Kasner E., Finite representation of the solar gravitational field in flat space of six dimensions, Amer. J. Math. 43 (1921), 130-133.
  19. Maia M.D., On the integrability conditions for extended objects, Classical Quantum Gravity 6 (1989), 173-183.
  20. Pandey S.N., Kansal I.D., Impossibility of class one electromagnetic fields, Math. Proc. Cambridge Phil. Soc. 66 (1969), 153-154.
  21. Paranjape A., Dadhich N., Embedding diagrams for the Reissner-Nordström spacetime, Gen. Relativity Gravitation 36 (2004), 1189-1195, gr-qc/0307056.
  22. Paston S.A., Gravity as a field theory in flat space-time, Theoret. and Math. Phys. 169 (2011), 1611-1619, arXiv:1111.1104.
  23. Paston S.A., Franke V.A., Canonical formulation of the embedded theory of gravity that is equivalent to Einstein's general relativity, Theoret. and Math. Phys. 153 (2007), 1582-1596, arXiv:0711.0576.
  24. Paston S.A., Semenova A.N., Constraint algebra for Regge-Teitelboim formulation of gravity, Internat. J. Theoret. Phys. 49 (2010), 2648-2658, arXiv:1003.0172.
  25. Paston S.A., Sheykin A.A., Embeddings for the Schwarzschild metric: classification and new results, Classical Quantum Gravity 29 (2012), 095022, 17 pages, arXiv:1202.1204.
  26. Paston S.A., Sheykin A.A., From the embedding theory to general relativity in a result of inflation, Internat. J. Modern Phys. D 21 (2012), 1250043, 19 pages, arXiv:1106.5212.
  27. Pavšič M., Classical theory of a space-time sheet, Phys. Lett. A 107 (1985), 66-70.
  28. Pavšič M., Tapia V., Resource letter on geometrical results for embeddings and branes, gr-qc/0010045.
  29. Płazowski J., The imbedding method of finding the maximal extensions of solutions of Einstein field equations, Acta Phys. Polon. B 4 (1973), 49-63.
  30. Regge T., Teitelboim C., General relativity à la string: a progress report, in Proceedings of the First Marcel Grossmann Meeting on General Relativity (Trieste, Italy, 1975), Editor R. Ruffini, North-Holland Publishing Company, 1977, 77-88.
  31. Rosen J., Embedding of the Schwarzschild and Reissner-Weyl solutions, Nuovo Cimento 38 (1965), 631-633.
  32. Rosen J., Embedding of various relativistic Riemannian spaces in pseudo-Euclidean spaces, Rev. Modern Phys. 37 (1965), 204-214.
  33. Santos N.L., Dias Ó.J.C., Lemos J.P.S., Global embedding of D-dimensional black holes with a cosmological constant in Minkowskian spacetimes: matching between Hawking temperature and Unruh temperature, Phys. Rev. D 70 (2004), 124033, 7 pages, hep-th/0412076.
  34. Stephani H., Kramer D., MacCallum M., Hoenselaers C., Herlt E., Exact solutions of Einstein's field equations, 2nd ed., Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2003.
  35. Tapia V., Gravitation à la string, Classical Quantum Gravity 6 (1989), L49-L56.


Previous article  Next article   Contents of Volume 10 (2014)