|
SIGMA 9 (2013), 071, 9 pages arXiv:1307.3775
https://doi.org/10.3842/SIGMA.2013.071
Contribution to the Special Issue on Noncommutative Geometry and Quantum Groups in honor of Marc A. Rieffel
Levi-Civita's Theorem for Noncommutative Tori
Jonathan Rosenberg
Department of Mathematics, University of Maryland, College Park, MD 20742, USA
Received July 26, 2013, in final form November 19, 2013; Published online November 21, 2013;
Proposition 3.4 corrected January 20, 2015
Abstract
We show how to define Riemannian metrics and connections on a noncommutative torus in such
a way that an analogue of Levi-Civita's theorem on the existence and uniqueness of a Riemannian connection
holds. The major novelty is that we need to use two different notions of noncommutative vector field.
Levi-Civita's theorem makes it possible to define Riemannian curvature using the usual formulas.
Key words:
noncommutative torus; noncommutative vector field; Riemannian metric; Levi-Civita connection; Riemannian curvature; Gauss-Bonnet theorem.
pdf (333 kb)
tex (15 kb)
[previous version:
pdf (333 kb)
tex (15 kb)]
References
- Bratteli O., Elliott G.A., Jorgensen P.E.T., Decomposition of unbounded
derivations into invariant and approximately inner parts, J. Reine
Angew. Math. 346 (1984), 166-193.
- Connes A., C* algèbres et géométrie différentielle,
C. R. Acad. Sci. Paris Sér. A-B 290 (1980), A599-A604,
hep-th/0101093.
- Connes A., Moscovici H., Modular curvature for noncommutative two-tori,
J. Amer. Math. Soc.
27 (2014), 639-684,
arXiv:1110.3500.
- Connes A., Tretkoff P., The Gauss-Bonnet theorem for the noncommutative
two torus, in Noncommutative Geometry, Arithmetic, and Related Topics, Johns
Hopkins Univ. Press, Baltimore, MD, 2011, 141-158, arXiv:0910.0188.
- do Carmo M.P., Riemannian geometry, Mathematics: Theory & Applications,
Birkhäuser Boston Inc., Boston, MA, 1992.
- Elliott G.A., The diffeomorphism group of the irrational rotation
C*-algebra, C. R. Math. Rep. Acad. Sci. Canada 8
(1986), 329-334.
- Fathizadeh F., Khalkhali M., The Gauss-Bonnet theorem for noncommutative
two tori with a general conformal structure, J. Noncommut. Geom.
6 (2012), 457-480, arXiv:1005.4947.
- Fathizadeh F., Khalkhali M., Scalar curvature for the noncommutative two torus,
J. Noncommut. Geom.
7 (2013), 1145-1183, arXiv:1110.3511.
- Fathizadeh F., Khalkhali M., Scalar curvature for noncommutative four-tori,
arXiv:1301.6135.
- Levi-Civita T., Nozione di parallelismo in una varietà qualunque e
conseguente specificazione geometrica della curvatura riemanniana,
Rend. Circ. Mat. Palermo 42 (1917), 172-205.
- Rosenberg J., Noncommutative variations on Laplace's equation, Anal.
PDE 1 (2008), 95-114, arXiv:0802.4033.
|
|