|
SIGMA 9 (2013), 054, 28 pages arXiv:1208.4821
https://doi.org/10.3842/SIGMA.2013.054
Contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa
Extended T-System of Type G2
Jian-Rong Li a and Evgeny Mukhin b
a) Department of Mathematics, Lanzhou University, Lanzhou 730000, P.R. China
b) Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, 402 North Blackford St, Indianapolis, IN 46202-3216, USA
Received April 03, 2013, in final form August 16, 2013; Published online August 22, 2013
Abstract
We prove a family of 3-term relations in the Grothendieck ring of the category of
finite-dimensional modules over the affine quantum algebra of type G2 extending the celebrated
T-system relations of type G2.
We show that these relations can be used to compute classes of certain irreducible modules, including
classes of all minimal affinizations of type G2.
We use this result to obtain explicit formulas for dimensions of all participating modules.
Key words:
quantum affine algebra of type G2; minimal affinizations; extended T-systems; q-characters; Frenkel-Mukhin algorithm.
pdf (545 kb)
tex (30 kb)
References
- Chari V., Pressley A., Quantum affine algebras, Comm. Math. Phys.
142 (1991), 261-283.
- Chari V., Pressley A., A guide to quantum groups, Cambridge University Press,
Cambridge, 1994.
- Chari V., Pressley A., Minimal affinizations of representations of quantum
groups: the nonsimply-laced case, Lett. Math. Phys. 35
(1995), 99-114, hep-th/9410036.
- Chari V., Pressley A., Quantum affine algebras and their representations, in
Representations of Groups (Banff, AB, 1994), CMS Conf. Proc.,
Vol. 16, Amer. Math. Soc., Providence, RI, 1995, 59-78,
hep-th/9411145.
- Chari V., Pressley A., Factorization of representations of quantum affine
algebras, in Modular Interfaces (Riverside, CA, 1995), AMS/IP
Stud. Adv. Math., Vol. 4, Amer. Math. Soc., Providence, RI, 1997, 33-40.
- Cherednik I.V., A new interpretation of Gel'fand-Tzetlin bases,
Duke Math. J. 54 (1987), 563-577.
- Drinfel'd V.G., A new realization of Yangians and of quantum affine algebras,
Soviet Math. Dokl. 36 (1988), 212-216.
- Frenkel E., Mukhin E., Combinatorics of q-characters of finite-dimensional
representations of quantum affine algebras, Comm. Math. Phys.
216 (2001), 23-57, math.QA/9911112.
- Frenkel E., Reshetikhin N., The q-characters of representations of quantum
affine algebras and deformations of W-algebras, in Recent
Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC,
1998), Contemp. Math., Vol. 248, Amer. Math. Soc., Providence, RI,
1999, 163-205, math.QA/9810055.
- Hernandez D., The Kirillov-Reshetikhin conjecture and solutions of
T-systems, J. Reine Angew. Math. 596 (2006), 63-87,
math.QA/0501202.
- Hernandez D., On minimal affinizations of representations of quantum groups,
Comm. Math. Phys. 276 (2007), 221-259,
math.QA/0607527.
- Hernandez D., Leclerc B., Cluster algebras and quantum affine algebras,
Duke Math. J. 154 (2010), 265-341, arXiv:0903.1452.
- Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of
T-systems and Y-systems, dilogarithm identities, and cluster
algebras I: type Br, Publ. Res. Inst. Math. Sci. 49
(2013), 1-42, arXiv:1001.1880.
- Inoue R., Iyama O., Keller B., Kuniba A., Nakanishi T., Periodicities of
T-systems and Y-systems, dilogarithm identities, and cluster
algebras II: types Cr, F4, and G2, Publ. Res. Inst.
Math. Sci. 49 (2013), 43-85, arXiv:1001.1881.
- Kirillov A.N., Reshetikhin N.Yu., Representations of Yangians and
multiplicities of the inclusion of the irreducible components of the tensor
product of representations of simple Lie algebras, J. Soviet Math.
52 (1990), 3156-3164.
- Kuniba A., Nakanishi T., Suzuki J., Functional relations in solvable lattice
models. I. Functional relations and representation theory,
Internat. J. Modern Phys. A 9 (1994), 5215-5266,
hep-th/9309137.
- Kuniba A., Nakanishi T., Suzuki J., T-systems and Y-systems in
integrable systems, J. Phys. A: Math. Theor. 44 (2011),
103001, 146 pages, arXiv:1010.1344.
- Mukhin E., Young C.A.S., Extended T-systems, Selecta Math. (N.S.)
18 (2012), 591-631, arXiv:1104.3094.
- Mukhin E., Young C.A.S., Path description of type B q-characters,
Adv. Math. 231 (2012), 1119-1150, arXiv:1103.5873.
- Nakajima H., t-analogs of q-characters of Kirillov-Reshetikhin
modules of quantum affine algebras, Represent. Theory 7
(2003), 259-274, math.QA/0204185.
- Nakajima H., Quiver varieties and t-analogs of q-characters of quantum
affine algebras, Ann. of Math. (2) 160 (2004), 1057-1097,
math.QA/0105173.
- Nazarov M., Tarasov V., Representations of Yangians with Gelfand-Zetlin
bases, J. Reine Angew. Math. 496 (1998), 181-212,
q-alg/9502008.
|
|