|
SIGMA 9 (2013), 049, 23 pages arXiv:1302.6298
https://doi.org/10.3842/SIGMA.2013.049
Contribution to the Special Issue in honor of Anatol Kirillov and Tetsuji Miwa
A Common Structure in PBW Bases of the Nilpotent Subalgebra of $U_q(\mathfrak{g})$ and Quantized Algebra of Functions
Atsuo Kuniba a, Masato Okado b and Yasuhiko Yamada c
a) Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Tokyo 153-8902, Japan
b) Department of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
c) Department of Mathematics, Faculty of Science, Kobe University, Hyogo 657-8501, Japan
Received March 19, 2013, in final form July 10, 2013; Published online July 19, 2013
Abstract
For a finite-dimensional simple Lie algebra $\mathfrak{g}$,
let $U^+_q(\mathfrak{g})$ be the positive part of
the quantized universal enveloping algebra, and
$A_q(\mathfrak{g})$ be the quantized algebra of functions.
We show that the transition matrix of the PBW bases of $U^+_q(\mathfrak{g})$
coincides with the intertwiner between the irreducible
$A_q(\mathfrak{g})$-modules labeled by two different reduced expressions of the longest element of the
Weyl group of $\mathfrak{g}$. This generalizes the earlier result by Sergeev on $A_2$ related to the
tetrahedron equation and endows
a new representation theoretical interpretation with
the recent solution to the 3D reflection equation for $C_2$.
Our proof is based on a realization of $U^+_q(\mathfrak{g})$ in a
quotient ring of $A_q(\mathfrak{g})$.
Key words:
quantized enveloping algebra; PBW bases; quantized algebra of functions; tetrahedron equation.
pdf (543 kb)
tex (48 kb)
References
- Bazhanov V.V., Mangazeev V.V., Sergeev S.M., Quantum geometry of
3-dimensional lattices, J. Stat. Mech. Theory Exp. 2008
(2008), P07004, 27 pages, arXiv:0801.0129.
- Bazhanov V.V., Sergeev S.M., Zamolodchikov's tetrahedron equation and hidden
structure of quantum groups, J. Phys. A: Math. Gen. 39
(2006), 3295-3310, hep-th/0509181.
- Berenstein A., Zelevinsky A., Total positivity in Schubert varieties,
Comment. Math. Helv. 72 (1997), 128-166.
- Chari V., Pressley A., A guide to quantum groups, Cambridge University Press,
Cambridge, 1994.
- Drinfeld V.G., Quantum groups, in Proceedings of the International Congress
of Mathematicians, Vols. 1, 2 (Berkeley, Calif., 1986), Amer. Math.
Soc., Providence, RI, 1987, 798-820.
- Geiß C., Leclerc B., Schröer J., Cluster structures on quantum coordinate
rings, Selecta Math. (N.S.) 19 (2013), 337-397,
arXiv:1104.0531.
- Ip I.C.H., Positive representations of split real quantum groups of type $B_n$,
$C_n$, $F_4$, and $G_2$, arXiv:1205.2940.
- Isaev A.P., Kulish P.P., Tetrahedron reflection equations, Modern Phys.
Lett. A 12 (1997), 427-437, hep-th/9702013.
- Joseph A., Quantum groups and their primitive ideals, Ergebnisse der
Mathematik und ihrer Grenzgebiete (3), Vol. 29, Springer-Verlag, Berlin,
1995.
- Kapranov M.M., Voevodsky V.A., 2-categories and Zamolodchikov tetrahedra
equations, in Algebraic Groups and their Generalizations: Quantum and
Infinite-Dimensional Methods (University Park, PA, 1991), Proc.
Sympos. Pure Math., Vol. 56, Amer. Math. Soc., Providence, RI, 1994,
177-259.
- Kashiwara M., Global crystal bases of quantum groups, Duke Math. J.
69 (1993), 455-485.
- Kuniba A., Okado M., A solution of the 3D reflection equation from quantized
algebra of functions of type $B$, arXiv:1210.6430.
- Kuniba A., Okado M., Tetrahedron and 3D reflection equations from quantized
algebra of functions, J. Phys. A: Math. Theor. 45 (2012),
465206, 27 pages, arXiv:1208.1586.
- Lusztig G., Canonical bases arising from quantized enveloping algebras,
J. Amer. Math. Soc. 3 (1990), 447-498.
- Lusztig G., Introduction to quantum groups, Progress in Mathematics,
Vol. 110, Birkhäuser Boston Inc., Boston, MA, 1993.
- McConnell J.C., Robson J.C., Noncommutative Noetherian rings, Pure and
Applied Mathematics (New York), John Wiley & Sons Ltd., Chichester, 1987.
- Noumi M., Yamada H., Mimachi K., Finite-dimensional representations of the
quantum group ${\rm GL}_q(n;{\bf C})$ and the zonal spherical functions on
${\rm U}_q(n-1)\backslash{\rm U}_q(n)$, Japan. J. Math.
19 (1993), 31-80.
- Reshetikhin N.Yu., Takhtadzhyan L.A., Faddeev L.D., Quantization of Lie groups
and Lie algebras, Leningrad Math. J. 1 (1990), 193-225.
- Sasaki N., Quantization of Lie group and algebra of $G_2$ type in the
Faddeev-Reshetikhin-Takhtajan approach, J. Math. Phys.
36 (1995), 4476-4488.
- Sergeev S.M., Tetrahedron equations and nilpotent subalgebras of ${\mathcal U}_q({\rm sl}_n)$, Lett. Math. Phys. 83 (2008), 231-235,
arXiv:0707.4029.
- Soibelman Y.S., Algebra of functions on a compact quantum group and its
representations, Leningrad Math. J. 2 (1991), 161-178.
- Soibelman Y.S., Selected topics in quantum groups, Internat. J. Modern
Phys. A 7 (1992), suppl. 1B, 859-887.
- Vaksman L.L., Soibelman Y.S., An algebra of functions on the quantum group
SU(2), Funct. Anal. Appl. 22 (1988), 170-181.
- Xi N.H., Canonical basis for type $B_2$, J. Algebra 214
(1999), 8-21.
- Xi N.H., On the PBW bases of the quantum group $U_v(G_2)$, Algebra
Colloq. 2 (1995), 355-362.
- Yakimov M., Invariant prime ideals in quantizations of nilpotent Lie
algebras, Proc. Lond. Math. Soc. (3) 101 (2010), 454-476,
arXiv:0905.0852.
- Zamolodchikov A.B., Tetrahedra equations and integrable systems in
three-dimensional space, Soviet Phys. JETP 52 (1980),
325-336.
|
|