|
SIGMA 9 (2013), 047, 40 pages arXiv:1202.4673
https://doi.org/10.3842/SIGMA.2013.047
The Universal Askey-Wilson Algebra and DAHA of Type $(C_1^{\vee},C_1)$
Paul Terwilliger
Department of Mathematics, University of Wisconsin, Madison, WI 53706-1388, USA
Received December 22, 2012, in final form July 07, 2013; Published online July 15, 2013
Abstract
Let $\mathbb F$ denote a field, and fix a nonzero $q\in\mathbb F$ such that $q^4\not=1$.
The universal Askey-Wilson algebra $\Delta_q$ is the associative $\mathbb F$-algebra defined by
generators and relations in the following way.
The generators are $A$, $B$, $C$.
The relations assert that each of
$A+\frac{qBC-q^{-1}CB}{q^2-q^{-2}}$,
$B+\frac{qCA-q^{-1}AC}{q^2-q^{-2}}$,
$C+\frac{qAB-q^{-1}BA}{q^2-q^{-2}}$
is central in $\Delta_q$.
The universal DAHA $\hat H_q$ of type $(C_1^\vee,C_1)$ is the associative $\mathbb F$-algebra defined by
generators $\lbrace t^{\pm1}_i\rbrace_{i=0}^3$ and relations (i) $t_i t^{-1}_i=t^{-1}_i t_i=1$; (ii) $t_i+t^{-1}_i$ is central; (iii) $t_0t_1t_2t_3=q^{-1}$.
We display an injection of $\mathbb F$-algebras $\psi:\Delta_q\to\hat H_q$ that sends
$A\mapsto t_1t_0+(t_1t_0)^{-1}$,
$B\mapsto t_3t_0+(t_3t_0)^{-1}$,
$C\mapsto t_2t_0+(t_2t_0)^{-1}$.
For the map $\psi$ we compute the image of the three central elements mentioned above.
The algebra $\Delta_q$ has another central element of interest, called the Casimir element $\Omega$.
We compute the image of $\Omega$ under $\psi$.
We describe how the Artin braid group $B_3$ acts on $\Delta_q$ and $\hat H_q$ as a group of automorphisms.
We show that $\psi$ commutes with these $B_3$ actions.
Some related results are obtained.
Key words:
Askey-Wilson polynomials; Askey-Wilson relations; rank one DAHA.
pdf (609 kb)
tex (36 kb)
References
- Alperin R.C., ${\rm PSL}_2(Z) = Z_2 \star Z_3$, Amer. Math. Monthly
100 (1993), 385-386.
- Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that
generalize Jacobi polynomials, Mem. Amer. Math. Soc. 54
(1985), no. 319, iv+55 pages.
- Bergman G.M., The diamond lemma for ring theory, Adv. Math.
29 (1978), 178-218.
- Cherednik I., Double affine Hecke algebras, Knizhnik-Zamolodchikov
equations, and Macdonald's operators, Int. Math. Res. Not.
(1992), 171-180.
- Ion B., Sahi S., Triple groups and Cherednik algebras, in Jack,
Hall-Littlewood and Macdonald Polynomials, Contemp. Math.,
Vol. 417, Amer. Math. Soc., Providence, RI, 2006, 183-206,
math.QA/0304186.
- Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable,
Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge
University Press, Cambridge, 2009.
- Ito T., Terwilliger P., Double affine Hecke algebras of rank 1 and the
${\mathbb Z}_3$-symmetric Askey-Wilson relations, SIGMA
6 (2010), 065, 9 pages, arXiv:1001.2764.
- Ito T., Terwilliger P., Weng C.-W., The quantum algebra $U_q(\mathfrak{sl}_2)$
and its equitable presentation, J. Algebra 298 (2006),
284-301, math.QA/0507477.
- Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials
and their $q$-analogues, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2010.
- Koornwinder T.H., The relationship between Zhedanov's algebra AW(3)
and the double affine Hecke algebra in the rank one case, SIGMA
3 (2007), 063, 15 pages, arXiv:math.QA/0612730.
- Koornwinder T.H., Zhedanov's algebra AW(3) and the double affine
Hecke algebra in the rank one case. II. The spherical subalgebra,
SIGMA 4 (2008), 052, 17 pages, arXiv:0711.2320.
- Korovnichenko A., Zhedanov A., Classical Leonard triples, in Elliptic
Integrable Systems (2004, Kyoto), Editors M. Noumi, K. Takasaki, Rokko Lectures in Mathematics, no. 18, Kobe University, 2005, 71-84.
- Oblomkov A., Double affine Hecke algebras of rank 1 and affine cubic
surfaces, Int. Math. Res. Not. 2004 (2004), 877-912,
math.RT/0306393.
- Sahi S., Nonsymmetric Koornwinder polynomials and duality, Ann. of
Math. (2) 150 (1999), 267-282, q-alg/9710032.
- Terwilliger P., The universal Askey-Wilson algebra, SIGMA
7 (2011), 069, 24 pages, arXiv:1104.2813.
- Terwilliger P., The universal Askey-Wilson algebra and the equitable
presentation of $U_q(\mathfrak{sl}_2)$, SIGMA 7 (2011),
099, 26 pages, arXiv:1107.3544.
- Terwilliger P., Vidunas R., Leonard pairs and the Askey-Wilson relations,
J. Algebra Appl. 3 (2004), 411-426,
math.QA/0305356.
- Wiegmann P.B., Zabrodin A.V., Algebraization of difference eigenvalue equations
related to $U_q({\rm sl}_2)$, Nuclear Phys. B 451 (1995),
699-724, cond-mat/9501129.
- Zhedanov A.S., "Hidden symmetry" of Askey-Wilson polynomials,
Theoret. and Math. Phys. 89 (1991), 1146-1157.
|
|