|
SIGMA 9 (2013), 045, 12 pages arXiv:1306.3628
https://doi.org/10.3842/SIGMA.2013.045
Euler Equations Related to the Generalized Neveu-Schwarz Algebra
Dafeng Zuo a, b
a) School of Mathematical Science, University of Science and Technology of China, Hefei 230026, P.R. China
b) Wu Wen-Tsun Key Laboratory of Mathematics, USTC, Chinese Academy of Sciences, P.R. China
Received March 11, 2013, in final form June 12, 2013; Published online June 16, 2013
Abstract
In this paper, we study supersymmetric or bi-superhamiltonian Euler equations related to the
generalized Neveu-Schwarz algebra.
As an application, we obtain several supersymmetric or bi-superhamiltonian generalizations of some
well-known integrable systems including the coupled KdV equation, the 2-component Camassa-Holm equation
and the 2-component Hunter-Saxton equation.
To our knowledge, most of them are new.
Key words:
supersymmetric; bi-superhamiltonian; Euler equations; generalized Neveu-Schwarz algebra.
pdf (393 kb)
tex (19 kb)
References
- Antonowicz M., Fordy A.P., Super-extensions of energy dependent Schrödinger
operators, Comm. Math. Phys. 124 (1989), 487-500.
- Aratyn H., Gomes J.F., Zimerman A.H., Deformations of N=2 superconformal
algebra and supersymmetric two-component Camassa-Holm equation,
J. Phys. A: Math. Theor. 40 (2007), 4511-4527,
hep-th/0611192.
- Arnold V.I., Sur la géométrie différentielle des groupes de Lie de
dimension infinie et ses applications à l'hydrodynamique des fluides
parfaits, Ann. Inst. Fourier (Grenoble) 16 (1966),
319-361.
- Arnold V.I., Khesin B.A., Topological methods in hydrodynamics, Applied
Mathematical Sciences, Vol. 125, Springer-Verlag, New York, 1998.
- Brunelli J.C., Das A., Popowicz Z., Supersymmetric extensions of the Harry
Dym hierarchy, J. Math. Phys. 44 (2003), 4756-4767,
nlin.SI/0304047.
- Chen M., Liu S.-Q., Zhang Y., A two-component generalization of the
Camassa-Holm equation and its solutions, Lett. Math. Phys.
75 (2006), 1-15, nlin.SI/0501028.
- Constantin A., Kappeler T., Kolev B., Topalov P., On geodesic exponential maps
of the Virasoro group, Ann. Global Anal. Geom. 31 (2007),
155-180.
- Constantin A., Kolev B., Geodesic flow on the diffeomorphism group of the
circle, Comment. Math. Helv. 78 (2003), 787-804,
math-ph/0305013.
- Constantin A., Kolev B., Integrability of invariant metrics on the
diffeomorphism group of the circle, J. Nonlinear Sci. 16
(2006), 109-122, arXiv:0911.5058.
- Devchand C., A Kuper-CH system, Unpublished note, 2005, Private
communications, 2010.
- Devchand C., Schiff J., The supersymmetric Camassa-Holm equation and
geodesic flow on the superconformal group, J. Math. Phys.
42 (2001), 260-273, solv-int/9811016.
- Ebin D.G., Marsden J., Groups of diffeomorphisms and the motion of an
incompressible fluid, Ann. of Math. (2) 92 (1970),
102-163.
- Falqui G., On a Camassa-Holm type equation with two dependent variables,
J. Phys. A: Math. Gen. 39 (2006), 327-342,
nlin.SI/0505059.
- Guha P., Geodesic flow on extended Bott-Virasoro group and generalized
two-component peakon type dual systems, Rev. Math. Phys. 20
(2008), 1191-1208.
- Guha P., Integrable geodesic flows on the (super)extension of the
Bott-Virasoro group, Lett. Math. Phys. 52 (2000),
311-328.
- Guha P., Olver P.J., Geodesic flow and two (super) component analog of the
Camassa-Holm equation, SIGMA 2 (2006), 054, 9 pages,
nlin.SI/0605041.
- Ito M., Symmetries and conservation laws of a coupled nonlinear wave equation,
Phys. Lett. A 91 (1982), 335-338.
- Khesin B., Topological fluid dynamics, Notices Amer. Math. Soc.
52 (2005), 9-19.
- Khesin B., Lenells J., Misioek G., Generalized Hunter-Saxton equation
and the geometry of the group of circle diffeomorphisms, Math. Ann.
342 (2008), 617-656, arXiv:0803.3078.
- Khesin B., Misioek G., Euler equations on homogeneous spaces and Virasoro
orbits, Adv. Math. 176 (2003), 116-144.
- Khesin B., Wendt R., The geometry of infinite-dimensional groups,
A Series of Modern Surveys in Mathematics, Vol. 51, Springer-Verlag,
Berlin, 2009.
- Kolev B., Bi-Hamiltonian systems on the dual of the Lie algebra of vector
fields of the circle and periodic shallow water equations, Philos.
Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365 (2007),
2333-2357, math-ph/0610001.
- Kupershmidt B.A., A super Korteweg-de Vries equation: an integrable
system, Phys. Lett. A 102 (1984), 213-215.
- Lenells J., A bi-Hamiltonian supersymmetric geodesic equation, Lett.
Math. Phys. 85 (2008), 55-63, arXiv:0806.4793.
- Lenells J., Lechtenfeld O., On the N=2 supersymmetric Camassa-Holm and
Hunter-Saxton equations, J. Math. Phys. 50 (2009),
012704, 17 pages, arXiv:0809.0077.
- Liu Q.P., Popowicz Z., Tian K., Supersymmetric reciprocal transformation and
its applications, J. Math. Phys. 51 (2010), 093511,
24 pages, arXiv:1002.1769.
- Liu Q.P., Popowicz Z., Tian K., The even and odd supersymmetric
Hunter-Saxton and Liouville equations, Phys. Lett. A
375 (2010), 29-35, arXiv:1005.3109.
- Manakov S.V., A remark on the integration of the Eulerian equations of the
dynamics of an n-dimensional rigid body, Funct. Anal. Appl.
10 (1976), 328-329.
- Marcel P., Ovsienko V., Roger C., Extension of the Virasoro and
Neveu-Schwarz algebras and generalized Sturm-Liouville operators,
Lett. Math. Phys. 40 (1997), 31-39,
hep-th/9602170.
- Marsden J.E., Ratiu T.S., Introduction to mechanics and symmetry. A basic
exposition of classical mechanical systems, Texts in Applied
Mathematics, Vol. 17, 2nd ed., Springer-Verlag, New York, 1999.
- Mathieu P., Supersymmetric extension of the Korteweg-de Vries equation,
J. Math. Phys. 29 (1988), 2499-2506.
- Mishchenko A.S., Integrals of geodesic flows on Lie groups, Funct.
Anal. Appl. 4 (1970), 232-235.
- Misioek G., A shallow water equation as a geodesic flow on the
Bott-Virasoro group, J. Geom. Phys. 24 (1998),
203-208.
- Ovsienko V.Yu., Coadjoint representation of Virasoro-type Lie algebras and
differential operators on tensor-densities, in Infinite Dimensional
Kähler Manifolds (Oberwolfach, 1995), DMV Sem., Vol. 31,
Birkhäuser, Basel, 2001, 231-255, math-ph/0602009.
- Ovsienko V.Yu., Khesin B.A., Korteweg-de Vries superequation as an Euler
equation, Funct. Anal. Appl. 21 (1987), 329-331.
- Popowicz Z., A 2-component or N=2 supersymmetric Camassa-Holm
equation, Phys. Lett. A 354 (2006), 110-114,
nlin.SI/0509050.
- Ratiu T., Euler-Poisson equations on Lie algebras and the
N-dimensional heavy rigid body, Proc. Nat. Acad. Sci. USA
78 (1981), 1327-1328.
- Zhang L., Zuo D., Integrable hierarchies related to the Kuper-CH spectral
problem, J. Math. Phys. 52 (2011), 073503, 11 pages.
- Zuo D., A two-component μ-Hunter-Saxton equation, Inverse
Problems 26 (2010), 085003, 9 pages, arXiv:1010.4454.
|
|