|
SIGMA 9 (2013), 044, 16 pages arXiv:1302.0637
https://doi.org/10.3842/SIGMA.2013.044
Two-Dimensional Toda-Heisenberg Lattice
Vadim E. Vekslerchik
Institute for Radiophysics and Electronics of NAS of Ukraine, 12, Proskura Str., Kharkiv, 61085, Ukraine
Received February 06, 2013, in final form June 04, 2013; Published online June 12, 2013
Abstract
We consider a nonlinear model that is a combination of the anisotropic two-dimensional classical
Heisenberg and Toda-like lattices.
In the framework of the Hirota direct approach, we present the field equations of this model as
a bilinear system, which is closely related to the Ablowitz-Ladik hierarchy, and derive its N-soliton
solutions.
Key words:
classical Heisenberg model; Toda-like lattices; Hirota direct method; Ablowitz-Ladik hierarchy; soliton.
pdf (398 kb)
tex (23 kb)
References
- Ablowitz M.J., Ladik J.F., Nonlinear differential-difference equations,
J. Math. Phys. 16 (1975), 598-603.
- Ablowitz M.J., Ladik J.F., Nonlinear differential-difference equations and
Fourier analysis, J. Math. Phys. 17 (1976), 1011-1018.
- Baxter R.J., Exactly solved models in statistical mechanics, Academic Press
Inc., London, 1982.
- Brown H.A., Luttinger J.M., Ferromagnetic and antiferromagnetic Curie
temperatures, Phys. Rev. 100 (1955), 685-692.
- Bruschi M., Ragnisco O., Lax representation and complete integrability for the
periodic relativistic Toda lattice, Phys. Lett. A 134
(1989), 365-370.
- Dorizzi B., Grammaticos B., Ramani A., Winternitz P., Are all the equations of
the Kadomtsev-Petviashvili hierarchy integrable?, J. Math.
Phys. 27 (1986), 2848-2852.
- Hietarinta J., A search for bilinear equations passing Hirota's three-soliton
condition. I. KdV-type bilinear equations, J. Math. Phys.
28 (1987), 1732-1742.
- Hietarinta J., A search for bilinear equations passing Hirota's three-soliton
condition. II. mKdV-type bilinear equations, J. Math. Phys.
28 (1987), 2094-2101.
- Hietarinta J., A search for bilinear equations passing Hirota's three-soliton
condition. III. Sine-Gordon-type bilinear equations, J. Math.
Phys. 28 (1987), 2586-2592.
- Hietarinta J., A search for bilinear equations passing Hirota's three-soliton
condition. IV. Complex bilinear equations, J. Math. Phys.
29 (1988), 628-635.
- Hietarinta J., Zhang D.J., Hirota's method and the search for integrable
partial difference equations. 1. Equations on a 3×3 stencil,
J. Difference Equ. Appl., to appear, arXiv:1210.4708.
- Hietarinta J., Zhang D.J., Hirota's method and the search for integrable
partial difference equations. 2. Equations on a 2×N stencil, in
Report of RIAM Symposium No. 22AO-S8 "Development in Nonlinear Wave:
Phenomena and Modeling", Research Institute for Applied
Mechanics, Kyushu University, 2011, 30-36.
- Hirota R., Nonlinear partial difference equations. I. A difference analogue
of the Korteweg-de Vries equation, J. Phys. Soc. Japan
43 (1977), 1424-1433.
- Hirota R., Nonlinear partial difference equations. II. Discrete-time Toda
equation, J. Phys. Soc. Japan 43 (1977), 2074-2078.
- Hirota R., The direct method in soliton theory, Cambridge Tracts in
Mathematics, Vol. 155, Cambridge University Press, Cambridge, 2004.
- Ishimori Y., An integrable classical spin chain, J. Phys. Soc. Japan
51 (1982), 3417-3418.
- Leznov A.N., Saveliev M.V., Smirnov V.G., Explicit solutions to
two-dimensionalized Volterra equations, Lett. Math. Phys.
4 (1980), 445-449.
- Mattis D.C., The theory of magnetism. I. Statics and dynamics, Springer
Series in Solid-State Sciences, Vol. 17, Springer-Verlag, Berlin, 1981.
- Newell A.C., Yunbo Z., The Hirota conditions, J. Math. Phys.
27 (1986), 2016-2021.
- Papageorgiou V., Grammaticos B., Ramani A., Orthogonal polynomial approach to
discrete Lax pairs for initial-boundary value problems of the QD
algorithm, Lett. Math. Phys. 34 (1995), 91-101.
- Pritula G.M., Vekslerchik V.E., Toda-Heisenberg chain: interacting
σ-fields in two dimensions, J. Nonlinear Math. Phys.
18 (2011), 443-459, arXiv:1108.5937.
- Ruijsenaars S.N.M., Relativistic Toda systems, Comm. Math. Phys.
133 (1990), 217-247.
- Vekslerchik V.E., Explicit solutions for a (2+1)-dimensional Toda-like
chain, J. Phys. A: Math. Theor. 46 (2013), 055202,
22 pages, arXiv:1301.0414.
- Vekslerchik V.E., Functional representation of the Ablowitz-Ladik
hierarchy. II, J. Nonlinear Math. Phys. 9 (2002),
157-180, solv-int/9812020.
- Vekslerchik V.E., The 2D Toda lattice and the Ablowitz-Ladik
hierarchy, Inverse Problems 11 (1995), 463-479.
|
|