Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)


SIGMA 9 (2013), 013, 25 pages      arXiv:1203.5119      https://doi.org/10.3842/SIGMA.2013.013
Contribution to the Special Issue “Loop Quantum Gravity and Cosmology”

Semiclassical Loop Quantum Gravity and Black Hole Thermodynamics

Arundhati Dasgupta
University of Lethbridge, 4401 University Drive, Lethbridge T1K 7R8, Canada

Received March 22, 2012, in final form February 05, 2013; Published online February 16, 2013

Abstract
In this article we explore the origin of black hole thermodynamics using semiclassical states in loop quantum gravity. We re-examine the case of entropy using a density matrix for a coherent state and describe correlations across the horizon due to SU(2) intertwiners. We further show that Hawking radiation is a consequence of a non-Hermitian term in the evolution operator, which is necessary for entropy production or depletion at the horizon. This non-unitary evolution is also rooted in formulations of irreversible physics.

Key words: black holes; loop quantum gravity; coherent states; entanglement entropy.

pdf (453 kb)   tex (82 kb)

References

  1. Álvarez N., Gambini R., Pullin J., Local Hamiltonian for spherically symmetric gravity coupled to a scalar field, Phys. Rev. Lett. 108 (2012), 051301, 4 pages, arXiv:1111.4962.
  2. Ambjørn J., Jurkiewicz J., Loll R., Lattice quantum gravity - an update, PoS Proc. Sci. (2010), PoS(LATTICE2010), 014, 14 pages, arXiv:1105.5582.
  3. Ashtekar A., Introduction to loop quantum gravity, arXiv:1201.4598.
  4. Ashtekar A., Baez J., Corichi A., Krasnov K., Quantum geometry and black hole entropy, Phys. Rev. Lett. 80 (1998), 904-907, gr-qc/9710007.
  5. Ashtekar A., Rovelli C., Smolin L., Weaving a classical metric with quantum threads, Phys. Rev. Lett. 69 (1992), 237-240, hep-th/9203079.
  6. Barbero J.F., Lewandowski J., Villasenor E.J., Quantum isolated horizons and black hole entropy, arXiv:1203.0174.
  7. Bardeen J.M., Carter B., Hawking S.W., The four laws of black hole mechanics, Comm. Math. Phys. 31 (1973), 161-170.
  8. Barvinsky A.O., Frolov V.P., Zel'nikov A.I., The wave function of a black hole and the dynamical origin of entropy, Phys. Rev. D 51 (1995), 1741-1763.
  9. Bekenstein J.D., Black holes and entropy, Phys. Rev. D 7 (1973), 2333-2346.
  10. Bianchi E., Magliaro E., Perini C., Coherent spin-networks, Phys. Rev. D 82 (2010), 024012, 7 pages, arXiv:0912.4054.
  11. Bombelli L., Koul R.K., Lee J., Sorkin R.D., Quantum source of entropy for black holes, Phys. Rev. D 34 (1986), 373-383.
  12. Borja E.F., Garay I., Strobel E., Revisiting the quantum scalar field in spherically symmetric quantum gravity, Classical Quantum Gravity 29 (2012), 145012, 19 pages, arXiv:1201.4229.
  13. Brown J.D., York Jr. J.W., Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D 47 (1993), 1407-1419, gr-qc/9209012.
  14. Corichi A., Black holes in loop quantum gravity: recent advances, J. Phys. Conf. Ser. 140 (2008), 012006, 13 pages, arXiv:0901.1302.
  15. Dasgupta A., Entanglement entropy and Bekenstein-Hawking entropy of black holes, in preparation.
  16. Dasgupta A., Coherent states for black holes, J. Cosmol. Astropart. Phys. 2003 (2003), no. 8, 004, 36 pages, hep-th/0305131.
  17. Dasgupta A., Entropic origin of Hawking radiation, in Proceedings of the Twelfth Marcel Grossmann Meeting on General Relativity (Paris, 2009), Editors T. Damour, R.T. Jantzen, R. Ruffini, World Scientific, Singapore, 2012, 1132-1134, arXiv:1003.0441.
  18. Dasgupta A., Semi-classical quantization of spacetimes with apparent horizons, Classical Quantum Gravity 23 (2006), 635-672, gr-qc/0505017.
  19. Dasgupta A., Semiclassical horizons, Can. J. Phys. 86 (2008), 659-662, arXiv:0711.0714.
  20. Dasgupta A., Time evolution of horizons, J. Modern Phys. 3 (2012), 1289-1297, arXiv:1007.1437.
  21. Dittrich B., Introduction to loop quantum gravity, Lectures given at University of New Brunswick, 2006.
  22. Doná P., Speziale S., Introductory lectures to loop quantum gravity, arXiv:1007.0402.
  23. Freidel L., Livine E.R., U(N) coherent states for loop quantum gravity, J. Math. Phys. 52 (2011), 052502, 21 pages, arXiv:1005.2090.
  24. Gambini R., Pullin J., Spherically symmetric gravity coupled to a scalar field with a local Hamiltonian: the complete initial-boundary value problem using metric variables, Classical Quantum Gravity 30 (2013), 025012, 7 pages, arXiv:1207.6028.
  25. Hall B.C., The Segal-Bargmann "coherent state" transform for compact Lie groups, J. Funct. Anal. 122 (1994), 103-151.
  26. Hawking S.W., Black holes in general relativity, Comm. Math. Phys. 25 (1972), 152-166.
  27. Hawking S.W., Particle creation by black holes, Comm. Math. Phys. 43 (1975), 199-220.
  28. Hawking S.W., Horowitz G.T., The gravitational Hamiltonian, action, entropy and surface terms, Classical Quantum Gravity 13 (1996), 1487-1498, gr-qc/9501014.
  29. Husain V., Mann R.B., Thermodynamics and phases in quantum gravity, Classical Quantum Gravity 26 (2009), 075010, 6 pages, arXiv:0812.0399.
  30. Husain V., Terno D., Dynamics and entanglement in spherically symmetric quantum gravity, Phys. Rev. D 81 (2010), 044039, 11 pages, arXiv:0903.1471.
  31. Husain V., Winkler O., Quantum Hamiltonian for gravitational collapse, Phys. Rev. D 73 (2006), 124007, 8 pages, gr-qc/0601082.
  32. Magliaro E., Marcianó A., Perini C., Coherent states for FLRW space-times in loop quantum gravity, Phys. Rev. D 83 (2011), 044029, 9 pages, arXiv:1011.5676.
  33. Majumdar P., Holography, gauge-gravity connection and black hole entropy, Internat. J. Modern Phys. A 24 (2009), 3414-3425, arXiv:0903.5080.
  34. Prigogine I., From being to becoming: time and complexity in physical sciences, Freeman, San Francisco, CA, 1980.
  35. Reinsch M.W., Morehead J.J., Asymptotics of Clebsch-Gordan coefficients, J. Math. Phys. 40 (1999), 4782-4806, math-ph/9906007.
  36. Sahlmann H., Thiemann T., Towards the QFT on curved spacetime limit of QGR. I. A general scheme, Classical Quantum Gravity 23 (2006), 867-908, gr-qc/0207030.
  37. Solodukhin S., Entanglement entropy of black holes, Living Rev. Relativity 14 (2011), 8, 96 pages, arXiv:1104.3712.
  38. Srednicki M., Entropy and area, Phys. Rev. Lett. 71 (1993), 666-669, hep-th/9303048.
  39. Strominger A., Vafa C., Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996), 99-104, hep-th/9601029.
  40. 't Hooft G., On the quantum structure of a black hole, Nuclear Phys. B 256 (1985), 727-745.
  41. Thiemann T., Modern canonical quantum general relativity, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 2007.
  42. Thiemann T., Winkler O., Gauge field theory coherent states (GCS). II. Peakedness properties, Classical Quantum Gravity 18 (2001), 2561-2636, hep-th/0005237.
  43. Varshalovich D.A., Moskalev A.N., Khersonskii V.K., Quantum theory of angular momentum, World Scientific Publishing Co. Inc., Teaneck, NJ, 1988.


Previous article  Next article   Contents of Volume 9 (2013)