|
SIGMA 9 (2013), 011, 10 pages arXiv:1209.1612
https://doi.org/10.3842/SIGMA.2013.011
On the n-Dimensional Porous Medium Diffusion Equation and Global Actions of the Symmetry Group
Jose A. Franco
Department of Mathematics and Statistics, University of North Florida, 1 UNF Drive, Jacksonville, FL 32224 USA
Received September 10, 2012, in final form February 08, 2013; Published online February 12, 2013
Abstract
By restricting to a special class of smooth functions, the local action of the symmetry
group is globalized.
This special class of functions is constructed using parabolic induction.
Key words:
globalization; porous medium equation; Lie group representation; Lorentz group; parabolic induction.
pdf (380 kb)
tex (15 kb)
References
- Ames W.F., Anderson R.L., Dorodnitsyn V.A., Ferapontov E.V., Gazizov R.K.,
Ibragimov N.H., Svirshchevskiĭ S.R., CRC handbook of Lie group
analysis of differential equations. Vol. 1, Symmetries, exact solutions and
conservation laws, CRC Press, Boca Raton, FL, 1994.
- Cowling M., Frenkel E., Kashiwara M., Valette A., Vogan Jr. D.A., Wallach N.R.,
Representation theory and complex analysis (Lectures from the C.I.M.E. Summer
School held in Venice, June 10-17, 2004), Lecture Notes in
Mathematics, Vol. 1931, Springer-Verlag, Berlin, 2008.
- Craddock M.J., Dooley A.H., On the equivalence of Lie symmetries and group
representations, J. Differential Equations 249 (2010),
621-653.
- Dorodnitsyn V.A., Knyazeva I.V., Svirshchevskiĭ S.R., Group properties of
the anisotropic heat equation with source
$T_{t}=\sum_{i}(K_{i}(T)T_{x_{i}})_{x_{i}}+Q(T)$, Akad. Nauk SSSR
Inst. Prikl. Mat., Preprint no. 134, 1982, 20 pages.
- Dos Santos Cardoso-Bihlo E., Bihlo A., Popovych R.O., Enhanced preliminary
group classification of a class of generalized diffusion equations,
Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 3622-3638,
arXiv:1012.0297.
- Franco J., Global $\widetilde{{\rm SL}(2,R)}$ representations of the
Schrödinger equation with singular potential, Cent. Eur. J.
Math. 10 (2012), 927-941, arXiv:1104.3508.
- Hunziker M., Sepanski M.R., Stanke R.J., The minimal representation of the
conformal group and classical solutions to the wave equation, J. Lie
Theory 22 (2012), 301-360, arXiv:0901.2280.
- Knapp A.W., Lie groups beyond an introduction, Progress in
Mathematics, Vol. 140, Birkhäuser Boston Inc., Boston, MA, 1996.
- Knapp A.W., Representation theory of semisimple groups, Princeton Landmarks in
Mathematics, Princeton University Press, Princeton, NJ, 2001.
- Kostant B., Wallach N., Action of the conformal group on steady state solutions
to Maxwell's equations and background radiation, arXiv:1109.5745.
- Olver P.J., Applications of Lie groups to differential equations,
Graduate Texts in Mathematics, Vol. 107, 2nd ed., Springer-Verlag,
New York, 1993.
- Ovsjannikov L.V., Group relations of the equation of non-linear heat
conductivity, Dokl. Akad. Nauk SSSR 125 (1959), 592-595.
- Sepanski M.R., Global actions of Lie symmetries for the nonlinear heat
equation, J. Math. Anal. Appl. 360 (2009), 35-46.
- Sepanski M.R., Nonlinear potential filtration equation and global actions of
Lie symmetries, Electron. J. Differential Equations 2009
(2009), no. 101, 24 pages.
- Sepanski M.R., Stanke R.J., Global Lie symmetries of the heat and
Schrödinger equation, J. Lie Theory 20 (2010),
543-580.
- Vázquez J.L., The porous medium equation. Mathematical theory, Oxford
Mathematical Monographs, The Clarendon Press, Oxford University Press,
Oxford, 2007.
- Wu Z., Zhao J., Yin J., Li H., Nonlinear diffusion equations, World Scientific
Publishing Co. Inc., River Edge, NJ, 2001.
|
|