|
SIGMA 9 (2013), 010, 22 pages arXiv:1101.5551
https://doi.org/10.3842/SIGMA.2013.010
The Clifford Deformation of the Hermite Semigroup
Hendrik De Bie a, Bent Ørsted b, Petr Somberg c and Vladimir
Souček c
a) Department of Mathematical Analysis, Ghent University, Galglaan 2, 9000 Gent, Belgium
b) Department of Mathematical Sciences, University of Aarhus, Building 530, Ny Munkegade, DK 8000, Aarhus C, Denmark
c) Mathematical Institute of Charles University, Sokolovská 83, 186 75 Praha, Czech Republic
Received September 21, 2012, in final form January 29, 2013; Published online February 05, 2013
Abstract
This paper is a continuation of the paper [De Bie H., Ørsted B., Somberg P.,
Souček V., Trans. Amer. Math. Soc. 364 (2012), 3875–3902], investigating a natural radial
deformation of the Fourier transform in the setting of Clifford analysis.
At the same time, it gives
extensions of many results obtained in [Ben Saïd S., Kobayashi T., Ørsted B.,
Compos. Math. 148 (2012), 1265–1336].
We establish the analogues of Bochner's formula and the Heisenberg uncertainty relation in the
framework of the (holomorphic) Hermite semigroup, and also give a detailed analytic treatment of
the series expansion of the associated integral transform.
Key words:
Dunkl operators; Clifford analysis; generalized Fourier transform; Laguerre polynomials; Kelvin transform; holomorphic semigroup.
pdf (474 kb)
tex (28 kb)
References
- Barbasch D., Ciubotaru D., Trapa P.E., Dirac cohomology for graded affine
Hecke algebras, Acta Math.
209 (2012), 197-227,
arXiv:1006.3822.
- Ben Saïd S., Kobayashi T., Ørsted B., Laguerre semigroup and Dunkl
operators, Compos.
Math. 148 (2012), 1265-1336,
arXiv:0907.3749.
- Cação I., Constales D., Krausshar R.S., On the role of arbitrary
order Bessel functions in higher dimensional Dirac type equations,
Arch.
Math.
(Basel) 87 (2006), 468-477.
- Cherednik I., Markov Y., Hankel transform via double Hecke algebra, in
Iwahori-Hecke algebras and their representation theory
(Martina-Franca, 1999), Lecture
Notes in Math., Vol. 1804,
Springer, Berlin, 2002, 1-25, math.QA/0004116.
- De Bie H., De Schepper N., Clifford-Gegenbauer polynomials related to the
Dunkl Dirac operator, Bull.
Belg.
Math.
Soc.
Simon Stevin
18 (2011), 193-214.
- De Bie H., De Schepper N., Sommen F., The class of Clifford-Fourier
transforms, J. Fourier Anal.
Appl. 17 (2011), 1198-1231,
arXiv:1101.1793.
- De Bie H., Ørsted B., Somberg P., Souček V., Dunkl operators and a
family of realizations of osp(1|2),
Trans.
Amer.
Math.
Soc. 364 (2012), 3875-3902, arXiv:0911.4725.
- De Bie H., Xu Y., On the Clifford-Fourier transform,
Int.
Math.
Res.
Not. 2011 (2011), no. 22, 5123-5163,
arXiv:1003.0689.
- Delanghe R., Sommen F., Souček V., Clifford algebra and spinor-valued
functions.
A function theory for the Dirac operator,
Mathematics and
its Applications, Vol. 53, Kluwer Academic Publishers Group, Dordrecht,
1992.
- Dunkl C.F., Differential-difference operators associated to reflection groups,
Trans.
Amer.
Math.
Soc. 311 (1989), 167-183.
- Dunkl C.F., Hankel transforms associated to finite reflection groups, in
Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and
Applications (Tampa, FL, 1991),
Contemp.
Math., Vol. 138, Amer.
Math.
Soc., Providence, RI, 1992, 123-138.
- Dunkl C.F., de Jeu M.F.E., Opdam E.M., Singular polynomials for finite
reflection groups, Trans.
Amer.
Math.
Soc. 346 (1994),
237-256.
- Dunkl C.F., Xu Y., Orthogonal polynomials of several variables,
Encyclopedia of Mathematics and its
Applications, Vol. 81, Cambridge
University Press, Cambridge, 2001.
- Erdélyi A., Magnus W., Oberhettinger F., Tricomi F.G., Higher transcendental
functions, Vol. II, Mc-Graw Hill, New York, 1953.
- Frappat L., Sciarrino A., Sorba P., Dictionary on Lie algebras and
superalgebras, Academic Press Inc., San Diego, CA, 2000.
- Gilbert J.E., Murray M.A.M., Clifford algebras and Dirac operators in
harmonic analysis, Cambridge Studies in
Advanced Mathematics,
Vol. 26, Cambridge University Press, Cambridge, 1991.
- Howe R., The oscillator semigroup, in The Mathematical Heritage of Hermann
Weyl (Durham, NC, 1987), Proc.
Sympos.
Pure Math., Vol. 48,
Amer.
Math.
Soc., Providence, RI, 1988, 61-132.
- Humphreys J.E., Reflection groups and Coxeter groups, Cambridge
Studies in Advanced Mathematics, Vol. 29, Cambridge University Press,
Cambridge, 1990.
- Kobayashi T., Mano G., Integral formulae for the minimal representation of
O(p,2), Acta Appl.
Math. 86 (2005), 103-113.
- Kobayashi T., Mano G., The inversion formula and holomorphic extension of the
minimal representation of the conformal group, in Harmonic Analysis, Group
Representations, Automorphic Forms and Invariant Theory,
Lect.
Notes
Ser.
Inst.
Math.
Sci.
Natl.
Univ.
Singap., Vol. 12, World Sci.
Publ.,
Hackensack, NJ, 2007, 151-208, math.RT/0607007.
- Kobayashi T., Mano G., The Schrödinger model for the minimal representation
of the indefinite orthogonal group O(p,q),
Mem.
Amer.
Math.
Soc. 213 (2011), no. 1000, vi+132 pages,
arXiv:0712.1769.
- Ol'shanski G.I., Complex Lie semigroups, Hardy spaces and the
Gel'fand-Gindikin program,
Differential Geom.
Appl. 1
(1991), 235-246.
- Ørsted B., Somberg P., Souček V., The Howe duality for the Dunkl
version of the Dirac operator, Adv.
Appl.
Clifford Algebr.
19 (2009), 403-415.
- Rösler M., A positive radial product formula for the Dunkl kernel,
Trans.
Amer.
Math.
Soc. 355 (2003), 2413-2438,
math.CA/0210137.
- Rösler M., Dunkl operators: theory and applications, in Orthogonal
Polynomials and Special Functions (Leuven, 2002),
Lecture Notes in
Math., Vol. 1817, Springer, Berlin, 2003, 93-135,
math.CA/0210366.
- Rösler M., Generalized Hermite polynomials and the heat equation for
Dunkl operators, Comm.
Math.
Phys. 192 (1998), 519-542,
q-alg/9703006.
- Szegö G., Orthogonal polynomials, American Mathematical Society,
Colloquium Publications, Vol. 23, 4th ed., American Mathematical Society,
Providence, R.I., 1975.
- Thangavelu S., Xu Y., Convolution operator and maximal function for the Dunkl
transform, J. Anal.
Math. 97 (2005), 25-55,
math.CA/0403049.
- Watson G.N., A treatise on the theory of Bessel functions, Cambridge
University Press, Cambridge, 1944.
|
|