|
SIGMA 9 (2013), 006, 13 pages arXiv:1206.3751
https://doi.org/10.3842/SIGMA.2013.006
On the N-Solitons Solutions in the Novikov-Veselov Equation
Jen-Hsu Chang
Department of Computer Science and Information Engineering, National Defense University, Tauyuan, Taiwan
Received October 01, 2012, in final form January 12, 2013; Published online January 20, 2013
Abstract
We construct the $N$-solitons solution in the Novikov-Veselov
equation from the extended Moutard transformation and the Pfaffian
structure. Also, the corresponding wave functions are obtained
explicitly. As a result, the property characterizing the
$N$-solitons wave function is proved using the Pfaffian expansion.
This property corresponding to the discrete scattering data for
$N$-solitons solution is obtained in [arXiv:0912.2155] from the $\overline\partial$-dressing method.
Key words:
Novikov-Veselov equation; $N$-solitons solutions; Pfaffian expansion; wave functions.
pdf (352 kb)
tex (20 kb)
References
- Athorne C., Nimmo J.J.C., On the Moutard transformation for integrable
partial differential equations, Inverse Problems 7 (1991),
809-826.
- Basalaev M.Yu., Dubrovsky V.G., Topovsky A.V., New exact solutions with constant
asymptotic values at infinity of the NVN integrable nonlinear evolution
equation via $\overline\partial$-dressing method, arXiv:0912.2155.
- Bogdanov L.V., Veselov-Novikov equation as a natural two-dimensional
generalization of the Korteweg-de Vries equation, Theoret. Math.
Phys. 70 (1987), 219-223.
- Chang J.H., The Gould-Hopper polynomials in the Novikov-Veselov
equation, J. Math. Phys. 52 (2011), 092703, 15 pages,
arXiv:1011.1614.
- Dubrovin B.A., Krichever I.M., Novikov S.P., The Schrödinger equation in a
periodic field and Riemann surfaces, Sov. Math. Dokl. 17
(1976), 947-952.
- Dubrovsky V.G., Formusatik I.B., New lumps of Veselov-Novikov integrable
nonlinear equation and new exact rational potentials of two-dimensional
stationary Schrödinger equation via $\overline\partial$-dressing
method, Phys. Lett. A 313 (2003), 68-76.
- Dubrovsky V.G., Formusatik I.B., The construction of exact rational solutions
with constant asymptotic values at infinity of two-dimensional NVN
integrable nonlinear evolution equations via the
$\overline\partial$-dressing method, J. Phys. A: Math.Gen.
34 (2001), 1837-1851.
- Grinevich P.G., Rational solitons of the Veselov-Novikov equations are
reflectionless two-dimensional potentials at fixed energy, Theoret.
Math. Phys. 69 (1986), 1170-1172.
- Grinevich P.G., Manakov S.V., Inverse scattering problem for the
two-dimensional Schrödinger operator, the $\overline\partial$-method and
nonlinear equations, Funct. Anal. Appl. 20 (1986), 94-103.
- Grinevich P.G., Mironov A.E., Novikov S.P., New reductions and nonlinear
systems for 2D Schrödinger operators, arXiv:1001.4300.
- Hirota R., The direct method in soliton theory, Cambridge Tracts in
Mathematics, Vol. 155, Cambridge University Press, Cambridge, 2004.
- Hu H.C., Lou S.Y., Construction of the Darboux transformaiton and solutions to
the modified Nizhnik-Novikov-Veselov equation, Chinese Phys. Lett.
21 (2004), 2073-2076.
- Hu H.C., Lou S.Y., Liu Q.P., Darboux transformation and variable separation
approach: the Nizhnik-Novikov-Veselov equation, Chinese Phys.
Lett. 20 (2003), 1413-1415, nlin.SI/0210012.
- Ishikawa M., Wakayama M., Applications of minor-summation formula.
II. Pfaffians and Schur polynomials, J. Combin. Theory Ser. A
88 (1999), 136-157.
- Kaptsov O.V., Shan'ko Yu.V., Trilinear representation and the Moutard
transformation for the Tzitzéica equation, solv-int/9704014.
- Kodama Y., KP solitons in shallow water, J. Phys. A: Math. Gen.
43 (2010), 434004, 54 pages, arXiv:1004.4607.
- Kodama Y., Maruno K., $N$-soliton solutions to the DKP equation and
Weyl group actions, J. Phys. A: Math. Gen. 39 (2006),
4063-4086, nlin.SI/0602031.
- Kodama Y., Williams L.K., KP solitons and total positivity for the
Grassmannian, arXiv:1106.0023.
- Kodama Y., Williams L.K., KP solitons, total positivity, and cluster
algebras, Proc. Natl. Acad. Sci. USA 108 (2011),
8984-8989, arXiv:1105.4170.
- Konopelchenko B.G., Introduction to multidimensional integrable equations. The
inverse spectral transform in 2+1 dimensions, Plenum Press, New York, 1992.
- Konopelchenko B.G., Landolfi G., Induced surfaces and their integrable
dynamics. II. Generalized Weierstrass representations in 4D spaces and
deformations via DS hierarchy, Stud. Appl. Math. 104
(2000), 129-169.
- Krichever I.M., A characterization of Prym varieties, Int. Math. Res.
Not. 2006 (2006), Art. ID 81476, 36 pages,
math.AG/0506238.
- Liu S.Q., Wu C.Z., Zhang Y., On the Drinfeld-Sokolov hierarchies of $D$
type, Int. Math. Res. Not. 2011 (2011), 1952-1996,
arXiv:0912.5273.
- Manakov S.V., The method of the inverse scattering problem, and two-dimensional
evolution equations, Russian Math. Surveys 31 (1976),
no. 5, 245-246.
- Matveev V.B., Salle M.A., Darboux transformations and solitons, Springer Series
in Nonlinear Dynamics, Springer-Verlag, Berlin, 1991.
- Mironov A.E., A relationship between symmetries of the Tzitzéica equation
and the Veselov-Novikov hierarchy, Math. Notes 82
(2007), 569-572.
- Mironov A.E., Finite-gap minimal Lagrangian surfaces in ${\mathbb C}{\rm P}^2$, in Riemann Surfaces, Harmonic Maps and Visualization, OCAMI
Stud., Vol. 3, Osaka Munic. Univ. Press, Osaka, 2010, 185-196,
arXiv:1005.3402.
- Mironov A.E., The Veselov-Novikov hierarchy of equations, and integrable
deformations of minimal Lagrangian tori in ${\mathbb C}{\rm P}^2$,
Sib. Electron. Math. Rep. 1 (2004), 38-46,
math.DG/0607700.
- Moutard M., Note sur les équations différentielles linéaires du second
ordre, C.R. Acad. Sci. Paris 80 (1875), 729-733.
- Moutard M., Sur la construction des équations de la forme $\frac{1}{z} \frac{\partial^2z}{\partial x\partial y} =\lambda(xy)$, qui admettent une
intégrale générale explicite, J. de. l'Éc. Polyt.
28 (1878), 1-12.
- Nimmo J.J.C., Darboux transformations in (2+1)-dimensions, in Applications
of Analytic and Geometric Methods to Nonlinear Differential Equations
(Exeter, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 413, Kluwer Acad. Publ., Dordrecht, 1993, 183-192.
- Nimmo J.J.C., Hall-Littlewood symmetric functions and the BKP equation,
J. Phys. A: Math. Gen. 23 (1990), 751-760.
- Novikov S.P., Two-dimensional Schrödinger operators in periodic fields,
J. Sov. Math. 28 (1985), 1-20.
- Novikov S.P., Veselov A.P., Two-dimensional Schrödinger operator: inverse
scattering transform and evolutional equations, Phys. D 18
(1986), 267-273.
- Ohta Y., Pfaffian solutions for the Veselov-Novikov equation,
J. Phys. Soc. Japan 61 (1992), 3928-3933.
- Orlov A.Yu., Shiota T., Takasaki K., Pfaffian structures and certain solutions
to BKP hierarchies. I. Sums over partitions, arXiv:1201.4518.
- Shiota T., Prym varieties and soliton equations, in Infinite-Dimensional Lie
Algebras and Groups (Luminy-Marseille, 1988), Adv. Ser. Math.
Phys., Vol. 7, World Sci. Publ., Teaneck, NJ, 1989, 407-448.
- Stembridge J.R., Nonintersecting paths, Pfaffians, and plane partitions,
Adv. Math. 83 (1990), 96-131.
- Taimanov I.A., Tsarev S.P., Two-dimensional rational solitons and their blowup
via the Moutard transformation, Theoret. Math. Phys. 157
(2008), 1525-1541, arXiv:0801.3225.
- Takasaki K., Dispersionless Hirota equations of two-component BKP
hierarchy, SIGMA 2 (2006), 057, 22 pages,
nlin.SI/0604003.
- Veselov A.P., Novikov S.P., Finite-zone, two-dimensional, potential
Schrödinger operators. Explicit formulas and evolution equations,
Sov. Math. Dokl. 30 (1984), 588-591.
|
|