|
SIGMA 9 (2013), 005, 13 pages arXiv:1301.4541
https://doi.org/10.3842/SIGMA.2013.005
Contribution to the Special Issue “Mirror Symmetry and Related Topics”
Upper Bounds for Mutations of Potentials
John Alexander Cruz Morales a and Sergey Galkin b, c, d, e
a) Department of Mathematics and Information Sciences, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hachioji, Tokyo 192-037, Japan
b) Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583, Japan
c) Independent University of Moscow, 11 Bolshoy Vlasyevskiy per., 119002, Moscow, Russia
d) Moscow Institute of Physics and Technology, 9 Institutskii per., Dolgoprudny, 141700, Moscow Region, Russia
e) Universität Wien, Fakultät für Mathematik, Garnisongasse 3/14, A-1090 Wien, Austria
Received May 31, 2012, in final form January 16, 2013; Published online January 19, 2013
Abstract
In this note we provide a new, algebraic proof of the excessive Laurent phenomenon for mutations of potentials (in the sense of [Galkin S., Usnich A., Preprint IPMU 10-0100, 2010]) by introducing to this theory the analogue of the upper bounds from [Berenstein A., Fomin S., Zelevinsky A., Duke Math. J. 126 (2005), 1-52].
Key words:
cluster algebras; Laurent phenomenon; mutation of potentials; mirror symmetry.
pdf (439 kb)
tex (22 kb)
References
- Akhtar M., Coates T., Galkin S., Kasprzyk A.M., Minkowski polynomials and
mutations, SIGMA 8 (2012), 094, 707 pages,
arXiv:1212.1785.
- Auroux D., Mirror symmetry and T-duality in the complement of an
anticanonical divisor, J. Gökova Geom. Topol. GGT 1
(2007), 51-91, arXiv:0706.3207.
- Berenstein A., Fomin S., Zelevinsky A., Cluster algebras. III. Upper bounds
and double Bruhat cells, Duke Math. J. 126 (2005), 1-52,
math.RT/0305434.
- Berenstein A., Zelevinsky A., Quantum cluster algebras, Adv. Math.
195 (2005), 405-455, math.QA/0404446.
- Cruz Morales J.A., Galkin S., Quantized mutations of potentials and their upper
bounds, in preparation.
- Fock V.V., Goncharov A.B., Cluster ensembles, quantization and the dilogarithm,
Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), 865-930,
math.AG/0311245.
- Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer.
Math. Soc. 15 (2002), 497-529, math.RT/0104151.
- Fukaya K., Oh Y.G., Ohta H., Ono K., Lagrangian Floer theory and mirror
symmetry on compact toric manifolds, arXiv:1009.1648.
- Galkin S., Usnich A., Mutations of potentials, Preprint IPMU 10-0100, 2010.
- Kontsevich M., Noncommutative identities, arXiv:1109.2469.
- Zelevinsky A., Quantum cluster algebras: Oberwolfach talk, February 2005,
math.QA/0502260.
|
|