|
SIGMA 8 (2012), 097, 27 pages arXiv:1207.0041
https://doi.org/10.3842/SIGMA.2012.097
Construction of a Lax Pair for the $\boldsymbol{E_6^{(1)}}$ $\boldsymbol{q}$-Painlevé System
Nicholas S. Witte a and Christopher M. Ormerod b
a) Department of Mathematics and Statistics, University of Melbourne, Victoria 3010, Australia
b) Department of Mathematics and Statistics, La Trobe University, Bundoora VIC 3086, Australia
Received September 05, 2012, in final form November 29, 2012; Published online December 11, 2012
Abstract
We construct a Lax pair for the $ E^{(1)}_6 $ $q$-Painlevé system from first principles by employing the general theory of
semi-classical orthogonal polynomial systems characterised by divided-difference operators on
discrete, quadratic lattices [arXiv:1204.2328]. Our study treats one special case of such lattices - the $q$-linear lattice -
through a natural generalisation of the big $q$-Jacobi weight.
As a by-product of our construction we derive the coupled first-order $q$-difference equations for the
$ E^{(1)}_6 $ $q$-Painlevé system, thus verifying our identification. Finally we establish the
correspondences of our result with the Lax pairs given earlier and separately by Sakai and Yamada, through explicit
transformations.
Key words:
non-uniform lattices; divided-difference operators; orthogonal polynomials; semi-classical weights; isomonodromic deformations; Askey table.
pdf (519 kb)
tex (32 kb)
References
- Birkhoff G.D., General theory of linear difference equations, Trans.
Amer. Math. Soc. 12 (1911), 243-284.
- Birkhoff G.D., The generalized Riemann problem for linear differential
equations and the Allied problems for linear difference and $q$-difference
equations, Trans. Amer. Math. Soc. 49 (1913), 521-568.
- Ismail M.E.H., Classical and quantum orthogonal polynomials in one variable,
Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge
University Press, Cambridge, 2005.
- Jimbo M., Sakai H., A $q$-analog of the sixth Painlevé equation,
Lett. Math. Phys. 38 (1996), 145-154,
chao-dyn/9507010.
- Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Construction of
hypergeometric solutions to the $q$-Painlevé equations, Int.
Math. Res. Not. 2005 (2005), no. 24, 1439-1463,
nlin.SI/0501051.
- Kajiwara K., Masuda T., Noumi M., Ohta Y., Yamada Y., Hypergeometric solutions
to the $q$-Painlevé equations, Int. Math. Res. Not.
2004 (2004), no. 47, 2497-2521, arXiv:nlin.SI/0403036.
- Koekoek R., Lesky P.A., Swarttouw R.F., Hypergeometric orthogonal polynomials
and their $q$-analogues, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2010.
- Koekoek R., Swarttouw R.F., The Askey-scheme of hypergeometric orthogonal
polynomials and its $q$-analogue, Report 98-17, Faculty of Technical
Mathematics and Informatics, Delft University of Technology, 1998,
http://aw.twi.tudelft.nl/~koekoek/askey/.
- Magnus A.P., Associated Askey-Wilson polynomials as Laguerre-Hahn
orthogonal polynomials, in Orthogonal Polynomials and their Applications
(Segovia, 1986), Lecture Notes in Math., Vol. 1329, Springer,
Berlin, 1988, 261-278.
- Magnus A.P., Special nonuniform lattice (snul) orthogonal polynomials on
discrete dense sets of points, J. Comput. Appl. Math. 65
(1995), 253-265, math.CA/9502228.
- Murata M., Lax forms of the $q$-Painlevé equations, J. Phys. A:
Math. Theor. 42 (2009), 115201, 17 pages, arXiv:0810.0058.
- Papageorgiou V.G., Nijhoff F.W., Grammaticos B., Ramani A., Isomonodromic
deformation problems for discrete analogues of Painlevé equations,
Phys. Lett. A 164 (1992), 57-64.
- Ramani A., Grammaticos B., Tamizhmani T., Tamizhmani K.M., Special function
solutions of the discrete Painlevé equations, Comput. Math.
Appl. 42 (2001), 603-614.
- Sakai H., A $q$-analog of the Garnier system, Funkcial. Ekvac.
48 (2005), 273-297.
- Sakai H., Lax form of the $q$-Painlevé equation associated with the
$A^{(1)}_2$ surface, J. Phys. A: Math. Gen. 39
(2006), 12203-12210.
- Sakai H., Rational surfaces associated with affine root systems and geometry of
the Painlevé equations, Comm. Math. Phys. 220 (2001),
165-229.
- Witte N.S., Semi-classical orthogonal polynomial systems on non-uniform
lattices, deformations of the Askey table and analogs of isomonodromy,
arXiv:1204.2328.
- Yamada Y., Lax formalism for $q$-Painlevé equations with affine Weyl
group symmetry of type $E^{(1)}_n$, Int. Math. Res. Not.
2011 (2011), no. 17, 3823-3838, arXiv:1004.1687.
|
|