|
SIGMA 8 (2012), 094, 707 pages arXiv:1212.1785
https://doi.org/10.3842/SIGMA.2012.094
Contribution to the Special Issue “Mirror Symmetry and Related Topics”
Minkowski Polynomials and Mutations
Mohammad Akhtar a, Tom Coates a, Sergey Galkin b and Alexander M. Kasprzyk a
a) Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK
b) Universität Wien, Fakultät für Mathematik, Garnisongasse 3/14, A-1090 Wien, Austria
Received June 14, 2012, in final form December 01, 2012; Published online December 08, 2012
Abstract
Given a Laurent polynomial f, one can form the period of
f: this is a function of one complex variable that plays an
important role in mirror symmetry for Fano manifolds. Mutations are
a particular class of birational transformations acting on Laurent
polynomials in two variables; they preserve the period and are
closely connected with cluster algebras. We propose a
higher-dimensional analog of mutation acting on Laurent polynomials
f in n variables. In particular we give a combinatorial
description of mutation acting on the Newton polytope P of f,
and use this to establish many basic facts about mutations.
Mutations can be understood combinatorially in terms of Minkowski
rearrangements of slices of P, or in terms of piecewise-linear
transformations acting on the dual polytope P* (much like
cluster transformations). Mutations map Fano polytopes to Fano
polytopes, preserve the Ehrhart series of the dual polytope, and
preserve the period of f. Finally we use our results to show
that Minkowski polynomials, which are a family of Laurent
polynomials that give mirror partners to many three-dimensional Fano
manifolds, are connected by a sequence of mutations if and only if
they have the same period.
Key words:
mirror symmetry; Fano manifold; Laurent polynomial;
mutation; cluster transformation; Minkowski decomposition; Minkowski
polynomial; Newton polytope; Ehrhart series; quasi-period collapse.
pdf (483 kb)
tex (5711 kb)
Appendices (8328 kb)
References
- Auroux D., Mirror symmetry and T-duality in the complement of an
anticanonical divisor, J. Gökova Geom. Topol. GGT 1
(2007), 51-91, arXiv:0706.3207.
- Batyrev V.V., Dual polyhedra and mirror symmetry for Calabi-Yau
hypersurfaces in toric varieties, J. Algebraic Geom. 3
(1994), 493-535, alg-geom/9310003.
- Batyrev V.V., Toric degenerations of Fano varieties and constructing mirror
manifolds, in The Fano Conference, Univ. Torino, Turin, 2004, 109-122,
alg-geom/9712034.
- Batyrev V.V., Ciocan-Fontanine I., Kim B., van Straten D., Conifold transitions
and mirror symmetry for Calabi-Yau complete intersections in
Grassmannians, Nuclear Phys. B 514 (1998), 640-666,
alg-geom/9710022.
- Batyrev V.V., Ciocan-Fontanine I., Kim B., van Straten D., Mirror symmetry and
toric degenerations of partial flag manifolds, Acta Math.
184 (2000), 1-39, math.AG/9803108.
- Batyrev V.V., Kreuzer M., Integral cohomology and mirror symmetry for
Calabi-Yau 3-folds, in Mirror Symmetry. V, AMS/IP Stud. Adv.
Math., Vol. 38, Amer. Math. Soc., Providence, RI, 2006, 255-270,
math.AG/0505432.
- Beck M., Sam S.V., Woods K.M., Maximal periods of (Ehrhart)
quasi-polynomials, J. Combin. Theory Ser. A 115 (2008),
517-525, math.CO/0702242.
- Coates T., Corti A., Galkin S., Golyshev V., Kasprzyk A.M., Fano varieties and
extremal Laurent polynomials, http://www.fanosearch.net/.
- Coates T., Corti A., Galkin S., Golyshev V., Kasprzyk A.M., Mirror symmetry and
Fano manifolds, Preprint, 2012.
- Cruz Morales J.A., Galkin S., Upper bounds for mutations of potentials,
Preprint IPMU 12-0110, 2012.
- Eguchi T., Hori K., Xiong C.S., Gravitational quantum cohomology,
Internat. J. Modern Phys. A 12 (1997), 1743-1782,
hep-th/9605225.
- Fiset M.H.J., Kasprzyk A.M., A note on palindromic δ-vectors for
certain rational polytopes, Electron. J. Combin. 15 (2008),
Note 18, 4 pages, arXiv:0806.3942.
- Fomin S., Zelevinsky A., Cluster algebras. I. Foundations, J. Amer.
Math. Soc. 15 (2002), 497-529, math.RT/0104151.
- Galkin S., Usnich A., Mutations of potentials, Preprint IPMU 10-0100, 2010.
- Gel'fand I.M., Kapranov M.M., Zelevinsky A.V., Discriminants, resultants, and
multidimensional determinants, Mathematics: Theory & Applications,
Birkhäuser Boston Inc., Boston, MA, 1994.
- Haase C., McAllister T.B., Quasi-period collapse and GLn(Z)-scissors congruence in rational polytopes, in Integer Points in
Polyhedra - Geometry, Number Theory, Representation Theory, Algebra,
Optimization, Statistics, Contemp. Math., Vol. 452, Amer. Math.
Soc., Providence, RI, 2008, 115-122, arXiv:0709.4070.
- Hori K., Vafa C., Mirror symmetry, hep-th/0002222.
- Ilten N.O., Mutations of Laurent polynomials and flat families with toric
fibers, SIGMA 8 (2012), 047, 7 pages, arXiv:1205.4664.
- Kasprzyk A.M., Canonical toric Fano threefolds, Canad. J. Math.
62 (2010), 1293-1309, arXiv:0806.2604.
- Kreuzer M., Skarke H., Classification of reflexive polyhedra in three
dimensions, Adv. Theor. Math. Phys. 2 (1998), 853-871,
hep-th/9805190.
- Kreuzer M., Skarke H., Complete classification of reflexive polyhedra in four
dimensions, Adv. Theor. Math. Phys. 4 (2000), 1209-1230,
hep-th/0002240.
- Lam T., Pylyavskyy P., Laurent phenomenon algebras, arXiv:1206.2611.
- Prokhorov Y.G., The degree of Fano threefolds with canonical Gorenstein
singularities, Sb. Math. 196 (2005), 77-114,
math.AG/0405347.
- Przyjalkowski V., On Landau-Ginzburg models for Fano varieties,
Commun. Number Theory Phys. 1 (2007), 713-728,
arXiv:0707.3758.
- Stanley R.P., Decompositions of rational convex polytopes, Ann.
Discrete Math. 6 (1980), 333-342.
|
|