|
SIGMA 8 (2012), 091, 12 pages arXiv:1101.2751
https://doi.org/10.3842/SIGMA.2012.091
Covariant Fields of C*-Algebras under Rieffel Deformation
Fabian Belmonte a and Marius Măntoiu b
a) D728, building A, SISSA-ISAS, Via Bonomea 265, 34136 Trieste, Italy
b) Departamento de Matemáticas, Universidad de Chile, Las Palmeras 3425, Casilla 653, Santiago, Chile
Received August 26, 2012, in final form November 22, 2012; Published online November 28, 2012
Abstract
We show that Rieffel's deformation sends covariant C(T)-algebras into C(T)-algebras.
We also treat the lower semi-continuity issue, proving that Rieffel's deformation transforms
covariant continuous fields of C*-algebras into continuous fields of C*-algebras.
Some examples are indicated, including certain quantum groups.
Key words:
pseudodifferential operator; Rieffel deformation; C*-algebra; continuous field; noncommutative dynamical system.
pdf (397 kb)
tex (22 kb)
References
- Belmonte F., Măntoiu M., Continuity of spectra in Rieffel's
pseudodifferential calculus, in Spectral Analysis of Quantum Hamiltonians,
Oper. Theory Adv. Appl., Vol. 224, Birkhäuser, Basel, 2012,
11-24.
- Beltiţă I., Măntoiu M.,
Rieffel deformation and twisted crossed products,
Int. Math. Res. Not., to appear, arXiv:1208.6548.
- Blanchard E., A few remarks on exact C(X)-algebras, Rev. Roumaine
Math. Pures Appl. 45 (2000), 565-576, math.OA/0012127.
- Blanchard É., Déformations de C*-algèbres de Hopf, Bull.
Soc. Math. France 124 (1996), 141-215.
- Dixmier J., Malliavin P., Factorisations de fonctions et de vecteurs
indéfiniment différentiables, Bull. Sci. Math. (2) 102
(1978), 307-330.
- Doplicher S., Fredenhagen K., Roberts J.E., The quantum structure of spacetime
at the Planck scale and quantum fields, Comm. Math. Phys.
172 (1995), 187-220, hep-th/0303037.
- Fell J.M.G., The structure of algebras of operator fields, Acta Math.
106 (1961), 233-280.
- Folland G.B., Harmonic analysis in phase space, Annals of Mathematics
Studies, Vol. 122, Princeton University Press, Princeton, NJ, 1989.
- Hannabuss K.C., Mathai V., Noncommutative principal torus bundles via
parametrised strict deformation quantization, in Superstrings, Geometry,
Topology, and C*-Algebras, Proc. Sympos. Pure Math., Vol. 81,
Amer. Math. Soc., Providence, RI, 2010, 133-147, arXiv:0911.1886.
- Hannabuss K.C., Mathai V., Parametrized strict deformation quantization of
C*-bundles and Hilbert C*-modules, J. Aust. Math. Soc.
90 (2011), 25-38, arXiv:1007.4696.
- Kasprzak P., Rieffel deformation via crossed products, J. Funct. Anal.
257 (2009), 1288-1332, math.OA/0606333.
- Landsman N.P., Mathematical topics between classical and quantum mechanics,
Springer Monographs in Mathematics, Springer-Verlag, New York, 1998.
- Lee R.Y., On the C*-algebras of operator fields, Indiana Univ.
Math. J. 25 (1976), 303-314.
- Măntoiu M., Rieffel's pseudodifferential calculus and spectral analysis for
quantum Hamiltonians, Ann. Inst. Fourier (Grenoble) 62
(2012), 1551-1580, arXiv:1003.3149.
- Nilsen M., C*-bundles and C0(X)-algebras, Indiana Univ.
Math. J. 45 (1996), 463-477.
- Packer J.A., Raeburn I., Twisted crossed products of C*-algebras. II,
Math. Ann. 287 (1990), 595-612.
- Piacitelli G., Quantum spacetime: a disambiguation, SIGMA 6
(2010), 073, 43 pages, arXiv:1004.5261.
- Raeburn I., Williams D.P., Morita equivalence and continuous-trace
C*-algebras, Mathematical Surveys and Monographs, Vol. 60,
American Mathematical Society, Providence, RI, 1998.
- Rieffel M.A., Compact quantum groups associated with toral subgroups, in
Representation Theory of Groups and Algebras, Contemp. Math., Vol. 145, Amer. Math. Soc., Providence, RI, 1993, 465-491.
- Rieffel M.A., Continuous fields of C*-algebras coming from group cocycles
and actions, Math. Ann. 283 (1989), 631-643.
- Rieffel M.A., Deformation quantization for actions of Rd,
Mem. Amer. Math. Soc. 106 (1993), no. 506, x+93 pages.
- Rieffel M.A., Quantization and C*-algebras, in C*-Algebras:
1943-1993 (San Antonio, TX, 1993), Contemp. Math., Vol. 167,
Amer. Math. Soc., Providence, RI, 1994, 66-97.
- Tomiyama J., Topological representation of C*-algebras, Tôhoku
Math. J. 14 (1962), 187-204.
- Williams D.P., Crossed products of C*-algebras, Mathematical
Surveys and Monographs, Vol. 134, American Mathematical Society, Providence,
RI, 2007.
|
|