|
SIGMA 8 (2012), 087, 23 pages arXiv:1211.3803
https://doi.org/10.3842/SIGMA.2012.087
Geometric Theory of the Recursion Operators for the Generalized Zakharov-Shabat System in Pole Gauge on the Algebra sl(n,C)
Alexandar B. Yanovski a and Gaetano Vilasi b
a) Department of Mathematics & Applied Mathematics, University of Cape Town, Rondebosch 7700, Cape Town, South Africa
b) Dipartimento di Fisica, Università degli Studi di Salerno, INFN, Sezione di Napoli-GC Salerno, Via Ponte Don Melillo, 84084, Fisciano (Salerno), Italy
Received May 17, 2012, in final form November 05, 2012; Published online November 16, 2012
Abstract
We consider the recursion operator approach to the soliton equations related to the generalized Zakharov-Shabat system on the algebra sl(n,C) in pole gauge both in the general position and in the presence of reductions. We present the recursion operators and discuss their geometric meaning as conjugate to Nijenhuis tensors for a Poisson-Nijenhuis structure defined on the manifold of potentials.
Key words:
Lax representation; recursion operators; Nijenhuis tensors.
pdf (451 kb)
tex (33 kb)
References
- Ablowitz M.J., Kaup D.J., Newell A.C., Segur H., The inverse scattering
transform - Fourier analysis for nonlinear problems, Studies in
Appl. Math. 53 (1974), 249-315.
- Beals R., Coifman R.R., Scattering and inverse scattering for first order
systems, Comm. Pure Appl. Math. 37 (1984), 39-90.
- Borovik A.E., Popkov V.Y., Completely integrable spin-1 chains,
Soviet Phys. JETP 71 (1990), 177-186.
- Faddeev L.D., Takhtajan L.A., Hamiltonian methods in the theory of solitons,
Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1987.
- Gerdjikov V.S., Generalised Fourier transforms for the soliton equations.
Gauge-covariant formulation, Inverse Problems 2 (1986),
51-74.
- Gerdjikov V.S., Grahovski G.G., Mikhailov A.V., Valchev T.I., Polynomial
bundles and generalised Fourier transforms for integrable equations on
A.III-type symmetric spaces, SIGMA 7 (2011), 096,
48 pages, arXiv:1108.3990.
- Gerdjikov V.S., Grahovski G.G., Mikhailov A.V., Valchev T.I., On soliton
interactions for hierarchy of generalized Heisenberg ferromagnetic model on
SU(3)/SU(1)×SU(2) symmetric space,
J. Geom. Symmetry Phys. 25 (2012), 23-56,
arXiv:1201.0534.
- Gerdjikov V.S., Mikhailov A.V., Valchev T.I., Recursion operators and
reductions of integrable equations on symmetric spaces, J. Geom.
Symmetry Phys. 20 (2010), 1-34, arXiv:1004.4182.
- Gerdjikov V.S., Mikhailov A.V., Valchev T.I., Reductions of integrable
equations on A.III-type symmetric spaces, J. Phys. A: Math.
Theor. 43 (2010), 434015, 13 pages, arXiv:1004.4182.
- Gerdjikov V.S., Vilasi G., Yanovski A.B., Integrable Hamiltonian hierarchies. Spectral and geometric methods,
Lecture Notes in Physics, Vol. 748, Springer-Verlag, Berlin, 2008.
- Gerdjikov V.S., Yanovski A.B., Completeness of the eigenfunctions for the
Caudrey-Beals-Coifman system, J. Math. Phys. 35
(1994), 3687-3725.
- Gerdjikov V.S., Yanovski A.B., Gauge covariant formulation of the generating
operator. I. The Zakharov-Shabat system, Phys. Lett. A
103 (1984), 232-236.
- Gerdjikov V.S., Yanovski A.B., Gauge covariant formulation of the generating
operator. II. Systems on homogeneous spaces, Phys. Lett. A
110 (1985), 53-58.
- Gerdjikov V.S., Yanovski A.B., Gauge covariant theory of the generating
operator. I, Comm. Math. Phys. 103 (1986), 549-568.
- Goto M., Grosshans F.D., Semisimple Lie algebras, Lecture Notes in
Pure and Applied Mathematics, Vol. 38, Marcel Dekker Inc., New York, 1978.
- Gürses M., Karasu A., Sokolov V.V., On construction of recursion operators
from Lax representation, J. Math. Phys. 40 (1999),
6473-6490, solv-int/9909003.
- Iliev I.D., Khristov E.K., Kirchev K.P., Spectral methods in soliton equations,
Pitman Monographs and Surveys in Pure and Applied Mathematics,
Vol. 73, Longman Scientific & Technical, Harlow, 1994.
- Lancaster P., Theory of matrices, Academic Press, New York, 1969.
- Lombardo S., Mikhailov A.V., Reductions of integrable equations: dihedral
group, J. Phys. A: Math. Gen. 37 (2004), 7727-7742,
nlin.SI/0404013.
- Magri F., A geometrical approach to the nonlinear solvable equations, in
Nonlinear Evolution Equations and Dynamical Systems (Proc. Meeting,
Univ. Lecce, Lecce, 1979), Lecture Notes in Phys., Vol. 120,
Springer, Berlin, 1980, 233-263.
- Magri F., A simple model of the integrable Hamiltonian equation,
J. Math. Phys. 19 (1978), 1156-1162.
- Magri F., Morosi C., A geometrical characterization of integrable Hamiltonian
systems through the theory of Poisson-Nijenhuis manifolds, Quaderni del
Dipartimento di Matematica, Università di Milano, 1984.
- Magri F., Morosi C., Ragnisco O., Reduction techniques for infinite-dimensional
Hamiltonian systems: some ideas and applications, Comm. Math.
Phys. 99 (1985), 115-140.
- Marsden J.E., Ratiu T., Reduction of Poisson manifolds, Lett. Math.
Phys. 11 (1986), 161-169.
- Mikhailov A.V., Reduction in the integrable systems. Reduction groups,
JETP Lett. 32 (1980), 187-192.
- Mikhailov A.V., The reduction problem and the inverse scattering method,
Phys. D 3 (1981), 73-117.
- Ortega J.P., Ratiu T.S., Momentum maps and Hamiltonian reduction,
Progress in Mathematics, Vol. 222, Birkhäuser Boston Inc., Boston,
MA, 2004.
- Ortega J.P., Ratiu T.S., Singular reduction of Poisson manifolds,
Lett. Math. Phys. 46 (1998), 359-372.
- Valchev T.I., On certain reductions of integrable equations on symmetric
spaces, AIP Conf. Proc. 1340 (2011), 154-164.
- Yanovski A.B., Gauge-covariant approach to the theory of the generating
operators for soliton equations, Ph.D. thesis, Joint Institute for Nuclear
Research, Dubna, 1987.
- Yanovski A.B., Generating operators for the generalized Zakharov-Shabat system
and its gauge equivalent system in sl(3,C) case,
Naturwissenchaftlich Theoretisches Zentrum Report N 20, Universität
Leipzig, 1993, available at
http://cdsweb.cern.ch/record/256804/files/P00019754.pdf.
- Yanovski A.B., Geometric interpretation of the recursion operators for the
generalized Zakharov-Shabat system in pole gauge on the Lie algebra
A2, J. Geom. Symmetry Phys. 23 (2011), 97-111.
- Yanovski A.B., Geometry of the Recursion Operators for Caudrey-Beals-Coifman
system in the presence of Mikhailov Zp reductions, J.
Geom. Symmetry Phys. 25 (2012), 77-97.
- Yanovski A.B., On the recursion operators for the Gerdjikov, Mikhailov, and
Valchev system, J. Math. Phys. 52 (2011), 082703,
14 pages.
- Yanovski A.B., Vilasi G., Geometry of the recursion operators for the GMV
system, J. Nonlinear Math. Phys. 19 (2012), 1250023,
18 pages.
- Zakharov V.E., Konopel'chenko B.G., On the theory of recursion operator,
Comm. Math. Phys. 94 (1984), 483-509.
- Zakharov V.E., Takhtajan L.A., Equivalence of the nonlinear Schrödinger
equation and the equation of a Heisenberg ferromagnet, Theoret. and
Math. Phys. 38 (1979), 17-23.
|
|